Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 167(4): 471-487, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30851007

RESUMO

Aluminum (Al3+ ) toxicity in acidic soils limits crop productivity worldwide. In this study, we found that putrescine (PUT) significantly alleviates Al toxicity in rice roots. The addition of 0.1 mM PUT promoted root elongation and reduced the Al content in the root apices of Nipponbare (Nip) and Kasalath (Kas) rice under Al toxicity conditions. Exogenous treatment with PUT reduced the cell wall Al content by reducing polysaccharide (pectin and hemicellulose) levels and pectin methylesterase (PME) activity in roots and decreased the translocation of Al from the external environment to the cytoplasm by downregulating the expression of OsNRAT1, which responsible to encode an Al transporter protein Nrat1 (Nramp aluminum transporter 1). The addition of PUT under Al toxicity conditions significantly inhibited ethylene emissions and suppressed the expression of genes involved in ethylene biosynthesis. Treatment with the ethylene precursor 1-aminocylopropane-1-carboxylic acid (ACC) significantly improved ethylene emission, inhibited root elongation, increased the Al accumulation in root tips and the root cell wall, and increased cell wall pectin and hemicellulose contents in both rice cultivars under Al toxicity conditions. The ethylene biosynthesis antagonist aminoethoxyvinylglycine (AVG, inhibitor of the ACC synthase) had the opposite effect and reduced PME activity. Together, our results show that PUT decreases the cell wall Al contents by suppressing ethylene emissions and decreases the symplastic Al levels by downregulating OsNRAT1 in rice.


Assuntos
Alumínio/toxicidade , Parede Celular/química , Etilenos/química , Oryza/química , Putrescina/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/química
2.
Plant Physiol Biochem ; 138: 80-90, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30852240

RESUMO

When boron (B) deficiency and aluminum (Al) toxicity co-exist in acidic soils, crop productivity is limited. In the current study, we found that 3 µM of B pretreatment significantly enhances rice root elongation under Al toxicity conditions. Pretreatment with B significantly decreases the deposition of Al in rice apoplasts, suppresses the synthesis of cell wall pectin, inhibits cell wall pectin methylesterase (PME) activity and its gene expression, and increases the expression of OsSTAR1 and OsSTAR2, which are responsible for reducing the Al content in the cell walls. In addition, B pretreatment significantly increases OsALS1 expression, thereby facilitating the transfer of Al from the cytoplasm to the vacuoles. However, B pretreatment had no effect on Al uptake and citric acid secretion. Pretreatment with B significantly increases the activity of ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT), thus increasing the elimination rate of H2O2 in rice roots. Co-treatment using B and H2O2 does not increase root growth under Al toxicity conditions; it also improves pectin synthesis, enhances PME activity, and increases Al deposition in root cell walls. However, the co-treatment of B and H2O2 scavenger 4-hydroxy-TEMPO has an opposite effect. The above results indicate that applying B fertilizers in acidic soil can help decrease the side effects of Al toxicity on rice growth.


Assuntos
Alumínio/farmacologia , Boro/farmacologia , Parede Celular/metabolismo , Peróxido de Hidrogênio/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/biossíntese
3.
Ying Yong Sheng Tai Xue Bao ; 27(1): 99-106, 2016 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-27228598

RESUMO

We conducted a greenhouse gas emissions study of different rice-based cropping systems in the Taihu Lake region. The results indicated that the seasonal CH4 emission initially increased, but declined over time. CH4emission mainly occurred during the early stages of rice growth and decreased after the paddy soil dried. N2O emission mainly occurred during the fertilizer application and paddy field drying stages. Compared with N20 emission, CH4 emission contributed significantly more to the global warming potential (GWP) during the rice season. The proportion of CH4 emission to the total greenhouse gas emissions, which this study aimed to reduce, ranged from 94.7%-99.6%. CH4emissions and their GWP during the rice season varied significantly under different rotation systems, with the order of wheat-rice rotation>Chinese milk vetch-rice rotation>fallow-rice rotation, while the N2O emissions and their GWP exhibited no significant differences. Compared with no nitrogen fertilization, applying N fertilizer significantly reduced CH4 emission and GWP of the Chinese milk vetch-rice rotation. However, CH4 emission and GWP did not vary with N application rates. The rice yield was largest when the N application rate was 240 kg · hm⁻². Taking economic and environmental benefits into account, we found that a N application rate of 240 kg · hm⁻² and a straw-return application of Chinese milk vetch not only reduced greenhouse gas emissions but also achieved the highest rice grain yield, which was recommended as a suitable cropping system for the Taihu Lake region.


Assuntos
Agricultura/métodos , Aquecimento Global , Metano/análise , Óxido Nitroso/análise , China , Fertilizantes , Gases/análise , Nitrogênio , Oryza , Estações do Ano , Solo , Triticum , Vicia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA