RESUMO
PURPOSE: Breast cancer is the most frequent cancer in women with significant death rate. Morbidity is associated with drug resistance and metastasis. Development of novel drugs is unmet need. The aim of this study is to show potent anti-neoplastic activity of the UM171 compound on breast cancer cells and its mechanism of action. METHODS: The inhibitory effect of UM171 on several breast cancer (BC) cell lines was examined using MTT and colony-forming assays. Cell cycle and apoptosis assays were utilized to determine the effect of UM171 on BC cell proliferation and survival. Wound healing scratch and transwell migration assays were used to examine the migration of BC cell lines in culture. Xenograft of mouse model with 4T1 cells was used to determine inhibitory effect of UM171 in vivo. Q-RT-PCR and western blotting were used to determine the expression level of genes effected by UM171. Lentivirus-mediated shRNAs were used to knockdown the expression of KLF2 in BC cells. RESULTS: UM171 was previously identified as a potent agonist of human hematopoietic stem cell renewal and inhibitor of leukemia. In this study, UM171 was shown to inhibit the growth of multiple breast cancer cell lines in culture. UM171-mediated growth inhibition was associated with the induction of apoptosis, G2/M cell cycle arrest, lower colony-forming capacity, and reduced motility. In a xenotransplantation model of mouse triple-negative breast cancer 4T1 cells injected into syngeneic BALB/c mice, UM171 strongly inhibited tumor growth at a level comparable to control paclitaxel. UM171 increased the expression of the three PIM genes (PIM1-3) in breast cancer cells. Moreover, UM171 strongly induced the expression of the tumor suppressor gene KLF2 and cell cycle inhibitor P21CIP1. Accordingly, knockdown of KLF2 using lentivirus-mediated shRNA significantly attenuated the growth suppressor activity of UM171. As PIM1-3 act as oncogenes and are involved in breast cancer progression, induction of these kinases likely impedes the inhibitory effect of KLF2 induction by UM171. Accordingly, combination of UM171 with a PAN-PIM inhibitor LGH447 significantly reduced tumor growth in culture. CONCLUSION: These results suggested that UM171 inhibited breast cancer progression in part through activation of KLF2 and P21. Combination of UM171 with a PAN-PIM inhibitor offer a novel therapy for aggressive forms of breast cancer.
Assuntos
Apoptose , Neoplasias da Mama , Movimento Celular , Proliferação de Células , Fatores de Transcrição Kruppel-Like , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Feminino , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Progressão da Doença , Modelos Animais de DoençasRESUMO
During hematopoiesis, megakaryocytic erythroid progenitors (MEPs) differentiate into megakaryocytic or erythroid lineages in response to specific transcriptional factors, yet the regulatory mechanism remains to be elucidated. Using the MEPlike cell line HEL western blotting, RTqPCR, lentivirusmediated downregulation, flow cytometry as well as chromatin immunoprecipitation (ChIp) assay demonstrated that the E26 transformationspecific (ETS) transcription factor friend leukemia integration factor 1 (Fli1) inhibits erythroid differentiation. The present study using these methods showed that while FLI1mediated downregulation of GATA binding protein 1 (GATA1) suppresses erythropoiesis, its direct transcriptional induction of GATA2 promotes megakaryocytic differentiation. GATA1 is also involved in megakaryocytic differentiation through regulation of GATA2. By contrast to FLI1, the ETS member erythroblast transformationspecificrelated gene (ERG) negatively controls GATA2 and its overexpression through exogenous transfection blocks megakaryocytic differentiation. In addition, FLI1 regulates expression of LIM Domain Binding 1 (LDB1) during erythroid and megakaryocytic commitment, whereas shRNAmediated depletion of LDB1 downregulates FLI1 and GATA2 but increases GATA1 expression. In agreement, LDB1 ablation using shRNA lentivirus expression blocks megakaryocytic differentiation and modestly suppresses erythroid maturation. These results suggested that a certain threshold level of LDB1 expression enables FLI1 to block erythroid differentiation. Overall, FLI1 controlled the commitment of MEP to either erythroid or megakaryocytic lineage through an intricate regulation of GATA1/GATA2, LDB1 and ERG, exposing multiple targets for cell fate commitment and therapeutic intervention.
Assuntos
Diferenciação Celular , Células Eritroides , Megacariócitos , Humanos , Diferenciação Celular/genética , Linhagem Celular , Células Eritroides/metabolismo , Células Eritroides/citologia , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Regulação da Expressão Gênica , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Megacariócitos/metabolismo , Megacariócitos/citologia , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Regulador Transcricional ERG/metabolismo , Regulador Transcricional ERG/genéticaRESUMO
BACKGROUND: FLI1 is an oncogenic transcription factor that promotes diverse malignancies through mechanisms that are not fully understood. Herein, FLI1 is shown to regulate the expression of Ubiquitin Associated and SH3 Domain Containing A/B (UBASH3A/B) genes. UBASH3B and UBASH3A are found to act as an oncogene and tumor suppressor, respectively, and their combined effect determines erythroleukemia progression downstream of FLI1. METHODS: Promoter analysis combined with luciferase assays and chromatin immunoprecipitation (ChIP) analysis were applied on the UBASH3A/B promoters. RNAseq analysis combined with bioinformatic was used to determine the effect of knocking-down UBASH3A and UBASH3B in leukemic cells. Downstream targets of UBASH3A/B were inhibited in leukemic cells either via lentivirus-shRNAs or small molecule inhibitors. Western blotting and RT-qPCR were used to determine transcription levels, MTT assays to assess proliferation rate, and flow cytometry to examine apoptotic index. RESULTS: Knockdown of FLI1 in erythroleukemic cells identified the UBASH3A/B genes as potential downstream targets. Herein, we show that FLI1 directly binds to the UBASH3B promoter, leading to its activation and leukemic cell proliferation. In contrast, FLI1 indirectly inhibits UBASH3A transcription via GATA2, thereby antagonizing leukemic growth. These results suggest oncogenic and tumor suppressor roles for UBASH3B and UBASH3A in erythroleukemia, respectively. Mechanistically, we show that UBASH3B indirectly inhibits AP1 (FOS and JUN) expression, and that its loss leads to inhibition of apoptosis and acceleration of proliferation. UBASH3B also positively regulates the SYK gene expression and its inhibition suppresses leukemia progression. High expression of UBASH3B in diverse tumors was associated with worse prognosis. In contrast, UBASH3A knockdown in erythroleukemic cells increased proliferation; and this was associated with a dramatic induction of the HSP70 gene, HSPA1B. Accordingly, knockdown of HSPA1B in erythroleukemia cells significantly accelerated leukemic cell proliferation. Accordingly, overexpression of UBASH3A in different cancers was predominantly associated with good prognosis. These results suggest for the first time that UBASH3A plays a tumor suppressor role in part through activation of HSPA1B. CONCLUSIONS: FLI1 promotes erythroleukemia progression in part by modulating expression of the oncogenic UBASH3B and tumor suppressor UBASH3A.
Assuntos
Leucemia Eritroblástica Aguda , Proteína Proto-Oncogênica c-fli-1 , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , RNA Interferente Pequeno/genética , Proteína EWS de Ligação a RNA/genética , Proteínas Tirosina Fosfatases/metabolismoRESUMO
Aim: Histamine decarboxylase (HDC) catalyzes decarboxylation of histidine to generate histamine. This enzyme affects several biological processes including inflammation, allergy, asthma, and cancer, although the underlying mechanism is not fully understood. The present study provides a novel insight into the relationship between the transcription factor FLI1 and its downstream target HDC, and their effects on inflammation and leukemia progression. Methods: Promoter analysis combined with chromatin immunoprecipitation (ChIp) was used to demonstrate binding of FLI1 to the promoter of HDC in leukemic cells. Western blotting and RT-qPCR were used to determine expression of HDC and allergy response genes, and lentivirus shRNA was used to knock-down target genes. Proliferation, cell cycle, apoptosis assays and molecular docking were used to determine the effect of HDC inhibitors in culture. An animal model of leukemia was employed to test the effect of HDC inhibitory compounds in vivo. Results: Results presented herein demonstrate that FLI1 transcriptionally regulates HDC by direct binding to its promoter. Using genetic and pharmacological inhibition of HDC, or the addition of histamine, the enzymatic product of HDC, we show neither have a discernable effect on leukemic cell proliferation in culture. However, HDC controls several inflammatory genes including IL1B and CXCR2 that may influence leukemia progression in vivo through the tumor microenvironment. Indeed, diacerein, an IL1B inhibitor, strongly blocked Fli-1-induced leukemia in mice. In addition to allergy, FLI1 is shown to regulate genes associated with asthma such as IL1B, CPA3 and CXCR2. Toward treatment of these inflammatory conditions, epigallocatechin (EGC), a tea polyphenolic compound, is found strongly inhibit HDC independently of FLI1 and its downstream effector GATA2. Moreover, the HDC inhibitor, tetrandrine, suppressed HDC transcription by directly binding to and inhibiting the FLI1 DNA binding domain, and like other FLI1 inhibitors, tetrandrine strongly suppressed cell proliferation in culture and leukemia progression in vivo. Conclusion: These results suggest a role for the transcription factor FLI1 in inflammation signaling and leukemia progression through HDC and point to the HDC pathway as potential therapeutics for FLI1-driven leukemia.
RESUMO
BACKGROUND: Lovastatin, an HMG-CoA inhibitor and an effective cholesterol lowering drug, exhibits anti-neoplastic activity towards several types of cancer, although the underlying mechanism is still not fully understood. Herein, we investigated mechanism of growth inhibition of leukemic cells by lovastatin. METHODS: RNAseq analysis was used to explore the effect of lovastatin on gene expression in leukemic cells. An animal model of leukemia was used to test the effect of this statin in vivo. FAM83A and DDIT4 expression was knocked-downed in leukemia cells via lentivirus-shRNA. Western blotting, RT-qPCR, cell cycle analysis and apoptosis assays were used to determine the effect of lovastatin-induced growth suppression in leukemic cells in vitro. RESULTS: Lovastatin treatment strongly inhibited cancer progression in a mouse model of erythroleukemia induced by Friend virus. In tissue culture, lovastatin inhibited cell proliferation through induction of G1 phase cell cycle arrest and apoptosis. Interestingly, lovastatin induced most known genes associated with cholesterol biosynthesis in leukemic cells. Moreover, it suppressed ERK1/2 phosphorylation by downregulating FAM83A and DDIT4, two mediators of MAP-Kinase signaling. RNAseq analysis of lovastatin treated leukemic cells revealed a strong induction of the tumor suppressor gene KLF2. Accordingly, lentivirus-mediated knockdown of KLF2 antagonized leukemia cell suppression induced by lovastatin, associated with higher ERK1/2 phosphorylation compared to control. We further show that KLF2 induction by lovastatin is responsible for lower expression of the FAM83A and DDIT4 oncogenes, involved in the activation of ERK1/2. KLF2 activation by lovastatin also activated a subset of cholesterol biosynthesis genes that may further contribute to leukemia suppression. CONCLUSIONS: These results implicate KLF2-mediated FAM83A/DDIT4/MAPK suppression and activation of cholesterol biosynthesis as the mechanism of leukemia cell growth inhibition by lovastatin.
Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Leucemia Eritroblástica Aguda , Neoplasias , Animais , Camundongos , Lovastatina/farmacologia , Leucemia Eritroblástica Aguda/tratamento farmacológico , Leucemia Eritroblástica Aguda/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Colesterol , Apoptose , Fatores de Transcrição Kruppel-Like/genéticaRESUMO
In cancer cells, multiple oncogenes and tumor suppressors control glycolysis to sustain rapid proliferation. The ETS-related transcription factor Fli1 plays a critical role in the induction and progression of leukemia, yet, the underlying mechanism of this oncogenic event is still not fully understood. In this study, RNAseq analysis of FLI1-depleted human leukemic cells revealed transcriptional suppression of the PKLR gene and activation of multiple glycolytic genes, such as PKM1/2. Pharmacological inhibition of glycolysis by PKM2 inhibitor, Shikonin, significantly suppressed leukemic cell proliferation. FLI1 directly binds to the PKLR promoter, leading to the suppression of this inhibitor of glycolysis. In accordance, shRNA-mediated depletion of PKLR in leukemic HEL cells expressing high levels of FLI1 accelerated leukemia proliferation, pointing for the first time to its tumor suppressor function. PKLR knockdown also led to downregulation of the erythroid markers EPOR, HBA1, and HBA2 and suppression of erythroid differentiation. Interestingly, silencing of PKLR in HEL cells significantly increased FLI1 expression, which was associated with faster proliferation in culture. In FLI1-expressing leukemic cells, lower PKLR expression was associated with higher expression of PKM1 and PKM2, which promote aerobic glycolysis. Finally, injection of pyruvate, a known inhibitor of glycolysis, into leukemia mice significantly suppressed leukemogenesis. These results demonstrate that FLI1 promotes leukemia in part by inducing glycolysis, implicates PKLR in erythroid differentiation, and suggests that targeting glycolysis may be an attractive therapeutic strategy for cancers driven by FLI1 overexpression.
Assuntos
Leucemia , Proteína Proto-Oncogênica c-fli-1 , Piruvato Quinase , Animais , Humanos , Camundongos , Carcinogênese , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Glicólise , Leucemia/genética , Leucemia/patologia , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismoRESUMO
The pyrimido-indole derivative UM171 promotes human Hematopoietic Stem Cells Expansion (HSCE), but its impact on leukemia is not known. Herein, we show in a mouse model of erythroleukemia that UM171 strongly suppresses leukemia progression. UM171 inhibits cell cycle progression and apoptosis of leukemic cells in culture. The effect of UM171 on leukemia differentiation was accompanied by increased expression of HSCE markers. RNAseq analysis combined with Q-RT-PCR and western blotting revealed that the PIM1 protein kinase is highly elevated in response to UM171 treatment. Moreover, docking analysis combined with immunoprecipitation assays revealed high binding affinity of UM171 to PIM1. Interestingly, pan-PIM kinase inhibitors counteracted the effect of UM171 on HSCE marker expression and PIM1 transcription, but not its suppression of leukemic cell growth. Moreover, combination treatment with UM171 and a pan-PIM inhibitor further suppressed leukemic cell proliferation compared to each drug alone. To uncover the mechanism of growth inhibition, we showed strong upregulation of the cyclin-dependent kinase inhibitor P21CIP1 and the transcription factor KLF2 by UM171. In accordance, KLF2 knockdown attenuated growth inhibition by UM171. KLF2 upregulation by UM171 is also responsible for the activation of P21CIP1 in leukemic cells leading to a G1/S arrest and suppression of leukemogenesis. Thus, suppression of leukemic growth by UM171 through KLF2 and P21CIP1 is thwarted by PIM-mediated expansion of leukemic stemness, uncovering a novel therapeutic modality involving combined UM171 plus PIM inhibitors.
RESUMO
In the theory of traditional Chinese medicine (TCM), "liver-qi" stagnation and heat-induced toxicity represent the main etiologies of breast cancer. Recently, several TCMs with heat-clearing and detoxification efficacy have shown inhibitory effects on breast cancer. Jin'gan capsules (JGCs), initially approved to treat colds in China, are a heat-clearing and detoxification TCM formula. However, the anticancer activity of JGCs against breast cancer and its underlying mechanisms remain unclear. First, we assessed the antiproliferative activity of JGCs in breast cancer cell lines and evaluated their effects on cell apoptosis and the cell cycle by flow cytometry. Furthermore, we identified the potential bioactive components of JGCs and their corresponding target genes and constructed a bioactive compound-target interaction network by ultra-performance liquid chromatography-high-resolution tandem mass spectrometry (UPLC-HR-MS/MS) and network pharmacology analysis. Finally, the underlying mechanism was investigated through gene function enrichment analysis and experimental validation. We found that JGCs significantly inhibited breast cancer cell growth with IC50 values of 0.56 ± 0.03, 0.16 ± 0.03, and 0.94 ± 0.09 mg/mL for MDA-MB-231, MDA-MB-468, and MCF-7, respectively. In addition, JGC treatment dramatically induced apoptosis and S phase cell cycle arrest in breast cancer cells. Western blot analysis confirmed that JGCs could regulate the protein levels of apoptosis- and cell cycle-related genes. Utilizing UPLC-HR-MS/MS analysis and network pharmacology, we identified 7 potential bioactive ingredients in JGCs and 116 antibreast cancer targets. Functional enrichment analysis indicated that the antitumor effects of JGCs were strongly associated with apoptosis and the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. Western blot analysis validated that JGC treatment markedly decreased the expression levels of p-JAK2, p-STAT3, and STAT3. Our findings suggest that JGCs suppress breast cancer cell proliferation and induce cell cycle arrest and apoptosis partly by inhibiting the JAK2/STAT3 signaling pathway, highlighting JGCs as a potential therapeutic candidate against breast cancer.
RESUMO
Breast cancer is the most common malignancy among women worldwide. As conventional therapies are only partially successful in eradicating breast cancer, the development of novel strategies is a top priority. We previously showed that C25, a new racemosin B derivative, exerts its anti-cancer activity through inhibition of autophagy, but the underlying mechanism remained unknown. Here we show that C25 inhibits the growth of diverse breast cancer cell subtypes and effectively suppresses tumor progression in a xenotransplantation model of triple negative breast cancer. C25 acts as a lysosomotropic agent to induce lysosomal membrane permeabilization and inhibit autophagic flux, resulting in cathepsin release and cell death. In accordance, RNA sequencing and gene set enrichment analysis revealed that C25 induces pathways consistent with autophagy inhibition, cell cycle arrest and senescence. Interestingly, knockdown of TFEB or SQSTM1 reduced cell death induced by C25 treatment. Finally, we show that C25 synergizes with the chemo-therapeutics etoposide and paclitaxel to further limit breast cancer cell growth. Thus, C25 alone or in combination with other anti-neoplastic agents offers a novel therapeutic strategy for aggressive forms of breast cancer and possibly other malignancies.
Assuntos
Lisossomos , Neoplasias de Mama Triplo Negativas , Autofagia , Carbazóis , Linhagem Celular Tumoral , Feminino , Humanos , Indóis/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismoRESUMO
RAS oncogenes are major drivers of diverse types of cancer. However, they are largely not druggable, and therefore targeting critical downstream pathways and dependencies is an attractive approach. We have isolated a tumorigenic cell line (FE1.2), which exhibits mesenchymal characteristics, after inoculating Ha-Ras-expressing retrovirus into mammary glands of rats, and subsequently isolated a non-aggressive revertant cell line (FC5). This revertant has lost the rat Ha-Ras driver and showed a more epithelial morphology, slower proliferation in culture, and reduced tumorigenicity in vivo. Re-expression of human Ha-RAS in these cells (FC5-RAS) reinduced mesenchymal morphology, higher proliferation rate, and tumorigenicity that was still significantly milder than parental FE1.2 cells. RNA-seq analysis of FC5-RAS vs FC5-Vector cells identified multiple genes whose expressions were regulated by Ha-RAS. This analysis also identified many genes including those controlling cell growth whose expression was altered by loss of HA-Ras in FC5 cells but remained unchanged upon reintroduction of Ha-RAS. These results suggest that targeting the Ha-Ras driver oncogene induces partial tumor regression, but it still denotes strong efficacy for cancer therapy. Among the RAS-responsive genes, we identified Twist1 as a critical mediator of epithelial-to-mesenchymal transition through the direct transcriptional regulation of vimentin. Mechanistically, we show that Twist1 is induced by the ETS gene, ETV4, downstream of Ha-RAS, and that inhibition of ETV4 suppressed the growth of breast cancer cells driven by the Ha-RAS pathway. Targeting the ETV4/Twist1/Vimentin axis may therefore offer a therapeutic modality for breast tumors driven by the Ha-RAS pathway.
Assuntos
Neoplasias da Mama , Humanos , Ratos , Animais , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Vimentina/genética , Genes ras , Carcinogênese/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética , Proteínas Proto-Oncogênicas c-ets/genéticaRESUMO
Inflammation plays a critical role in cancer initiation and progression, and is induced by inflammatory factors that are direct target of oncogenes and tumor suppressors. The ETS related transcription factor Fli-1 is involved in the induction and progression of various cancers; yet its role in inflammation is not well-defined. Using RNAseq analysis, we herein demonstrate that FLI1 induces the inflammatory pathway in erythroleukemia cells. Majority of genes within the TNF signaling pathway including TNF and IL1B were identified as transcriptional targets of FLI1. TNF expression is indirectly regulated by FLI1 through upregulation of another ETS related oncogene, SPI1/PU.1. Pharmacological inhibition of TNF significantly inhibited leukemia cell proliferation in culture. In contrast, IL1B expression is directly regulated by FLI1 through promoter binding and transcriptional activation. The secreted factor IL1B binds its canonical receptors to accelerate cancer progression through changes in the surrounding tumor microenvironment, fostering cell survival, proliferation and migration. Through network analysis, we identified IL1B-interacting genes whose expression is also regulated by FLI1. Among these, IL1B-interacting proteins, FOS, JUN, JUNB and CASP1 are negatively regulated by FLI1. Treatment of leukemia cells with inhibitors of AP1 (TAN IIA) and CASP1 (765VX) significantly accelerated FLI1-dependent leukemia progression. These results emphasize the significance of FLI1 in regulating the inflammatory pathway. Targeting these inflammatory genes downstream of FLI1 offers a novel strategy to treat leukemic progression associated with overexpression of this oncogenic ETS transcription factor.
Assuntos
Leucemia Eritroblástica Aguda , Leucemia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/genética , Leucemia/genética , Leucemia Eritroblástica Aguda/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Microambiente TumoralRESUMO
Cadmium (Cd) has been reported to exhibit antitumor effects against chemically induced liver tumors. However, the antitumor effects of Cd are not completely understood. Metallotherapy, the use of a toxic metal to attack liver tumors, could be a viable strategy. In the present study, 8-week old, male, C57BL/6 mice were administered injections of diethylnitrosamine (DEN) (90 mg/kg, and then 50 mg/kg 2 weeks later), followed by liver tumor promotion with carbon tetrachloride. Cadmium chloride was administered in the drinking water (1000 ppm) from 21-40 weeks after DEN initiation. Body weights were recorded and liver tumor formation was monitored via ultrasound. At the end of experiments, livers were removed, weighed, and the tumor incidence, tumor numbers and tumor size scores were recorded. Liver histology and metallothionein (MT) immunostaining were performed. After DEN injection, animal body weight decreased, and then slowly recovered with time. Cd treatment did not affect animal body weight gain. Ultrasound analysis detected liver tumors 35 weeks after DEN injection, and the mice were necropsied at 40 weeks. Liver/body weight ratios increased in the DEN and DEN + Cd groups. Cd treatment decreased the tumor incidence (71 vs. 17%), tumor numbers (15 vs. 2) and tumor scores (22 vs. 3) when compared with the DEN only group. Histopathology showed hepatocyte degeneration in all groups, and immunohistochemistry showed MT-deficiency in the liver tumors, while MT staining was intensified in the surrounding tissues. Reverse transcription-quantitative PCR showed increases in α-fetoprotein level in DEN-treated livers, and increases in MT-2 and tumor necrosis factor α (TNFα) levels in Cd-treated livers. Thus, it was concluded that Cd is effective in the suppression of DEN-induced liver tumors, and that the mechanisms may be related to MT-deficiency in tumors and the induction of TNFα to kill tumor cells.
RESUMO
Immunotherapeutic treatments are gaining attention due to their effective anti-tumor response. Particularly, the revolution of immune checkpoint inhibitors (ICIs) produces promising outcomes for various cancer types. However, the usage of immunotherapy is limited due to its low response rate, suggesting that tumor cells escape the immune surveillance. Rapid advances in transcriptomic profiling have led to recognize immune-related long non-coding RNAs (LncRNAs), as regulators of immune cell-specific gene expression that mediates immune stimulatory as well as suppression of immune response, indicating LncRNAs as targets to improve the efficacy of immunotherapy against tumours. Moreover, the immune-related LncRNAs acting as epigenetic modifiers are also under deep investigation. Thus, herein, is a summarised knowledge of LncRNAs and their regulation in the adaptive and innate immune system, considering their importance in autophagy and predicting putative immunotherapeutic responses.
Assuntos
Epigênese Genética/genética , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , RNA Longo não Codificante/metabolismo , Progressão da Doença , HumanosRESUMO
Leukemia is responsible for a reason of death, globally. Even though there are several treatment regimens available in the clinics against this disease, a perfect chemotherapeutic agent for the same is still under investigation. Natural plant-derived secondary metabolites are used in clinics to treat leukemia for better benefits with reduced side-effects. Likely, several bioactive compounds from Callistemon sp. were reported for their bioactive benefits. Furthermore, acylphloroglucinol derivatives from Callistemon salignus, showed both antimicrobial and cytotoxic activities in various adherent human cancer cell lines. Thus, in the present study, a natural acylphloroglucinol (2,6-dihydroxy-4-methoxyisobutyrophenone, L72) was tested for its antiproliferative efficacy in HEL cells. The MTT and the cell cycle analysis study revealed that L72 treatment can offer antiproliferative effects, both time and dose-dependent manner, causing G2/M cell cycle arrest. The western blot analysis revealed that L72 treatment triggered intrinsic apoptotic machinery and activated p21. Likewise, L72 could downregulate the gene expressions of XIAP, FLT3, IDH2, and SOD2, which was demonstrated by qPCR analysis, thus promoting its antiproliferative action. The L72 could impede STAT3 expression, which was evidenced by insilico autodock analysis and western blot analysis using STAT3 inhibitor, Pimozide. The treatment of transgenic (Flk-1+/egfr+) zebrafish embryos resulted in the STAT3 gene inhibition, proving its anti-angiogenic effect, as well. Thus, the study revealed that L72 could act as an antiproliferative agent, by triggering caspase-dependent intrinsic apoptosis, reducing cell proliferation by attenuating STAT3, and activating an anti-angiogenic pathway via Flk-1inhibition.
Assuntos
Inibidores da Angiogênese/farmacologia , Proliferação de Células/efeitos dos fármacos , Floroglucinol/farmacologia , Extratos Vegetais/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Inibidores da Angiogênese/isolamento & purificação , Animais , Animais Geneticamente Modificados , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Floroglucinol/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Estrutura Secundária de Proteína , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Peixe-ZebraRESUMO
BACKGROUND: Cholesterol plays vital roles in human physiology; abnormal levels have deleterious pathological consequences. In cancer, elevated or reduced expression of cholesterol biosynthesis is associated with good or poor prognosis, but the underlying mechanisms are largely unknown. The limonoid compounds A1542 and A1543 stimulate ERK/MAPK by direct binding, leading to leukemic cell death and suppression of leukemia in mouse models. In this study, we investigated the downstream consequences of these ERK/MAPK agonists in leukemic cells. METHODS: We employed RNAseq analysis combined with Q-RT-PCR, western blot and bioinformatics to identify and confirm genes whose expression was altered by A1542 and A1543 in leukemic cells. ShRNA lentiviruses were used to silence gene expression. Cell culture and an animal model (BALB/c) of erythroleukemia induced by Friend virus were utilized to validate effects of cholesterol on leukemia progression. RESULTS: RNAseq analysis of A1542-treated cells revealed the induction of all 18 genes implicated in cholesterol biosynthesis. Expression of these cholesterol genes was blocked by cedrelone, an ERK inhibitor. The cholesterol inhibitor lovastatin diminished ERK/MAPK activation by A1542, thereby reducing leukemic cell death induced by this ERK1/2 agonist. Growth inhibition by cholesterol was observed both at the intracellular level, and when orally administrated into a leukemic mouse model. Both HDL and LDL also suppressed leukemogenesis, implicating these lipids as important prognostic markers for leukemia progression. Mechanistically, knockdown experiments revealed that the activation of SREBP1/2 by A1542-A1543 was responsible for induction of only a sub-set of cholesterol biosynthesis genes. Induction of other regulatory factors by A1542-A1543 including EGR1, AP1 (FOS + JUN) LDLR, IER2 and others may cooperate with SREBP1/2 to induce cholesterol genes. Indeed, pharmacological inhibition of AP1 significantly inhibited cholesterol gene expression induced by A1542. In addition to leukemia, high expression of cholesterol biosynthesis genes was found to correlate with better prognosis in renal cancer. CONCLUSIONS: This study demonstrates that ERK1/2 agonists suppress leukemia and possibly other types of cancer through transcriptional stimulation of cholesterol biosynthesis genes.
Assuntos
Colesterol/metabolismo , Leucemia/genética , Limoninas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Feminino , Humanos , Leucemia/mortalidade , Masculino , Camundongos , Transdução de Sinais , Análise de Sobrevida , TransfecçãoRESUMO
Wiskott-Aldrich Syndrome, WAS/WAVE, is a rare, X-linked immune-deficiency disease caused by mutations in the WAS gene, which together with its homolog, N-WASP, regulates actin cytoskeleton remodeling and cell motility. WAS patients suffer from microthrombocytopenia, characterized by a diminished number and size of platelets, though the underlying mechanism is not fully understood. Here, we identified FLI1 as a direct transcriptional regulator of WAS and its binding partner WIP. Depletion of either WAS or WIP in human erythroleukemic cells accelerated cell proliferation, suggesting tumor suppressor function of both genes in leukemia. Depletion of WAS/WIP also led to a significant reduction in the percentage of CD41 and CD61 positive cells, which mark committed megakaryocytes. RNAseq analysis revealed common changes in megakaryocytic gene expression following FLI1 or WASP knockdown. However, in contrast to FLI1, WASP depletion did not alter expression of late-stage platelet-inducing genes. N-WASP was not regulated by FLI1, yet its silencing also reduced the percentage of CD41+ and CD61+ megakaryocytes. Moreover, combined knockdown of WASP and N-WASP further suppressed megakaryocyte differentiation, indicating a major cooperation of these related genes in controlling megakaryocytic cell fate. However, unlike WASP/WIP, N-WASP loss suppressed leukemic cell proliferation. WASP, WIP and N-WASP depletion led to induction of FLI1 expression, mediated by GATA1, and this may mitigate the severity of platelet deficiency in WAS patients. Together, these results uncover a crucial role for FLI1 in megakaryocyte differentiation, implicating this transcription factor in regulating microthrombocytopenia associated with Wiskott-Aldrich syndrome.
Assuntos
Proteínas do Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Trombopoese/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Síndrome de Wiskott-Aldrich/etiologia , Síndrome de Wiskott-Aldrich/metabolismo , Animais , Sequência de Bases , Biomarcadores , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-fli-1/genética , Transdução de SinaisRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C. A. Mey. is a traditional tonic that has been used for thousands of years, and has positive effects on vascular diseases. Ginsenoside Rg1 (GS-Rg1) is one of the active ingredients of Panax ginseng C. A. Mey. and has been shown to have beneficial effects against ischemia/reperfusion injury. Our previously study has found that GS-Rg1 can mobilize bone marrow stem cells and inhibit vascular smooth muscle proliferation and phenotype transformation. However, pharmacological effects and mechanism of GS-Rg1 in inhibiting intimal hyperplasia is still unknown. AIM OF THE STUDY: This study was aimed to investigate whether GS-Rg1 prevented vascular intimal hyperplasia, and the involvement of stromal cell-derived factor-1α (SDF-1α)/CXCR4, stem cell factor (SCF)/c-kit and fractalkine (FKN)/CX3CR1 axes. MATERIALS AND METHODS: Rats were operated with carotid artery balloon injury. The treatment groups were injected with 4, 8 and 16 mg/kg of GS-Rg1 for 14 days. The degree of intimal hyperplasia was evaluated by histopathological examination. The expression of α-SMA (α-smooth muscle actin) and CD133 were detected by double-label immunofluorescence. Serum levels of SDF-1α, SCF and soluble FKN (sFKN) were detected by enzyme linked immunosorbent assay (ELISA). The protein expressions of SCF, SDF-1α and FKN, as well as the receptors c-kit, CXC chemokine receptor type 4 (CXCR4) and CX3C chemokine receptor type 1 (CX3CR1) were detected by immunochemistry. RESULTS: GS-Rg1 reduced intimal hyperplasia by evidence of the values of NIA, the ratio of NIA/MA, and the ratio of NIA/IELA and the ratio of NIA/LA, especially in 16 mg/kg group. Furthermore, GS-Rg1 8 mg/kg group and 16 mg/kg group decreased the protein expressions of the SDF-1α/CXCR4, SCF/c-kit and FKN/CX3CR1 axes in neointima, meanwhile GS-Rg1 8 mg/kg group and 16 mg/kg group also attenuated the expressions of SDF-1α, SCF and sFKN in serum. In addition, the expression of α-SMA and CD133 marked smooth muscle progenitor cells (SMPCs) was decreased after GS-Rg1 treatment. CONCLUSIONS: GS-Rg1 has a positive effect on inhibiting vascular intimal hyperplasia, and the underlying mechanism is related to inhibitory expression of SDF-1α/CXCR4, SCF/c-kit and FKN/CX3CR1 axes.
Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Lesões das Artérias Carótidas/prevenção & controle , Quimiocina CX3CL1/metabolismo , Quimiocina CXCL12/metabolismo , Ginsenosídeos/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Neointima , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores CXCR4/metabolismo , Fator de Células-Tronco/metabolismo , Angioplastia com Balão , Animais , Lesões das Artérias Carótidas/etiologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/efeitos dos fármacos , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/patologia , Modelos Animais de Doenças , Hiperplasia , Masculino , Músculo Liso Vascular/lesões , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Ratos Sprague-Dawley , Transdução de SinaisRESUMO
Vascular restenosis has been proved as the major drawback of percutaneous coronary interventions, which is characterized by neointimal hyperplasia. Naringenin is a kind of natural dihydroflavonoid with a variety of beneficial effects, including anti-oxidative, anti-microbial, anti-cancer and anti-inflammatory properties. However, the effects of naringenin on vascular restenosis remain unclear. This study aimed at investigating the effect and the mechanisms of naringenin on balloon injury (BI)-induced neointimal hyperplasia in the common carotid artery (CCA). BI model of CCA was induced by a 2F Forgarty catheter balloon, and the pathological process of neointimal hyperplasia was noted at 1, 3, 7 and 14 days. Neointimal hyperplasia in CCA increased significantly, especially on day 14 after BI. Subsequently, naringenin (25, 50, 100â¯mg/kg/d) or volume-matched vehicle were administered to the rats by gavage daily for 14 days. Ultrasound detection and histopathological examination showed that naringenin dose-dependently inhibited BI-induced intimal hyperplasia, as evidenced by reducing imima-media thickness (IMT), neointimal area (NIA), neointimal area/media area (NIA/MA) and neointimal area/internal elastic area (NIA/IELA). Immunohistochemistry revealed that naringenin decreased the expression of proliferating cell nuclear antigen (PCNA) and the cluster of differentiation 163 (CD163). ELISA indicated naringenin significantly reduced the overproduction of IL-1ß and TNF-α. By detecting the activity of superoxide dismutase and the level of malondialdehyde and glutathione, we found that naringenin attenuated BI-induced oxidative stress. Additionally, RT-qPCR demonstrated that receptor-interacting protein 1 (RIP1), RIP3 and mixed lineage kinase domain-like (MLKL) mRNA expression were further down-regulated by naringenin treatment. These results suggested that naringenin can suppress BI-induced vascular neointimal hyperplasia through anti-inflammation and anti-oxidative stress, which may be related to the regulation of RIP1-RIP3-MLKL signaling pathway.
Assuntos
Antioxidantes/farmacologia , Artérias Carótidas/efeitos dos fármacos , Reestenose Coronária/tratamento farmacológico , Flavanonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antioxidantes/uso terapêutico , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Reestenose Coronária/metabolismo , Reestenose Coronária/patologia , Flavanonas/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Hiperplasia/patologia , Inflamação/metabolismo , Interleucina-1beta/sangue , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de Superfície Celular/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/sangueRESUMO
BACKGROUND: Intimal hyperplasia is the major therapeutic concern after percutaneous coronary intervention. The aim of this study is to investigate effects of 2,3,4',5-tetrahydroxystilbene-2-O-ß-D glucoside (TSG) on intimal hyperplasia and the underling mechanisms through attenuating the expressions of stromal cell-derived factor-1α (SDF-1α)/CXCR4, stem cell factor (SCF)/c-kit and fractalkine (FKN)/CX3CR1, and through promoting re-endothelialization with vascular endothelial growth factor (VEGF). METHOD: Rats were operated with carotid artery balloon injury. The treatment groups were gavaged with 50 and 100 mg/kg/d of TSG. After 10 days of treatment, carotid artery pathological changes were evaluated by histology. Serum levels of SDF-1α, SCF, FKN and VEGF were detected by enzyme linked immunosorbent assay. The protein expressions of the receptors c-kit, CXCR4, CX3CR1, as well as CD34 and proliferating cell nuclear antigen (PCNA) were detected by immunochemistry. RESULTS: TSG dose-dependently inhibited balloon injury-induced intimal hyperplasia, as evidenced by reducing neointima area (NIA), neointima area/media area (NIA/MA), neointima area/internal elastic area (NIA/IELA), and by decreasing the protein expression of PCNA. TSG reduced serum levels of SDF-1α, SCF and FKN, and it also decreased the expressions of the corresponding receptors c-kit, CXCR4, CX3CR1 in neointima. Importantly, the level of VEGF in peripheral blood and the expression of CD34 in vascular walls were increased to promote re-endothelialization. CONCLUSIONS: This study clearly demonstrated that TSG was effective in inhibiting intimal hyperplasia, and this effect was mediated, at least in part, through the SCF/c-kit, SDF-1α/CXCR4 and FKN/CX3CR1 axes. Importantly, TSG could increase VEGF and CD34 to promote endothelial repair.