Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 35(10): e21915, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34496088

RESUMO

During development, erythroid cells are generated by two waves of hematopoiesis. In zebrafish, primitive erythropoiesis takes place in the intermediate cell mass region, and definitive erythropoiesis arises from the aorta-gonad mesonephros. TALE-homeoproteins Meis1 and Pbx1 function upstream of GATA1 to specify the erythroid lineage. Embryos lacking Meis1 or Pbx1 have weak gata1 expression and fail to produce primitive erythrocytes. Nevertheless, the underlying mechanism of how Meis1 and Pbx1 mediate gata1 transcription in erythrocytes remains unclear. Here we show that Hif1α acts downstream of Meis1 to mediate gata1 expression in zebrafish embryos. Inhibition of Meis1 expression resulted in suppression of hif1a expression and abrogated primitive erythropoiesis, while injection with in vitro-synthesized hif1α mRNA rescued gata1 transcription in Meis1 morphants and recovered their erythropoiesis. Ablation of Hif1α expression either by morpholino knockdown or Crispr-Cas9 knockout suppressed gata1 transcription and abrogated primitive erythropoiesis. Results of chromatin immunoprecipitation assays showed that Hif1α associates with hypoxia-response elements located in the 3'-flanking region of gata1 during development, suggesting that Hif1α regulates gata1 expression in vivo. Together, our results indicate that Meis1, Hif1α, and GATA1 indeed comprise a hierarchical regulatory network in which Hif1α acts downstream of Meis1 to activate gata1 transcription through direct interactions with its cis-acting elements in primitive erythrocytes.


Assuntos
Células Eritroides/metabolismo , Eritropoese , Fator de Transcrição GATA1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína Meis1/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Imunoprecipitação da Cromatina , Eritrócitos/citologia , Eritrócitos/metabolismo , Células Eritroides/citologia , Eritropoese/genética , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica no Desenvolvimento , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína Meis1/deficiência , Proteína Meis1/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/deficiência , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Transcrição Gênica , Peixe-Zebra/sangue , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
2.
J Comput Biol ; 28(7): 674-686, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33512268

RESUMO

Hypoxia-inducible factors (HIFs) and survivin (Birc5) genes are often considered important cancer drug targets for molecularly targeted therapy, as both genes play important roles in the cellular differentiation and development of neuronal cells. Pathway enrichment analysis is predominantly applied when interpreting the correlated behaviors of activated gene clusters. Traditional enrichment analysis is evaluated via p-values only, regardless of gene expression fold-change levels, gene locations, and possible hidden interactions within a pathway. Here, we combined these factors to retrieve significant pathways, as compared with traditional approaches. We performed RNA-seq analyses on Birc5a and HIF2α knocked down in zebrafish during the embryogenesis stage. Regarding Birc5a, two additional biological pathways, sphingolipid metabolism and herpes simplex infection, were identified; whereas for HIF2α, four biological pathways were re-identified, including ribosome biogenesis in eukaryotes, proteasome, purine metabolism, and complement and coagulation cascades. Our proposed approaches identified additional significant pathways directly related to cell differentiation or cancer, also providing comprehensive mechanisms for designing further biological experiments.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Survivina/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Algoritmos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Peixe-Zebra/genética
3.
Neurotoxicol Teratol ; 38: 92-103, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23714372

RESUMO

Alcohol exposure during embryogenesis results in a variety of developmental disorders. Here, we demonstrate that continuous exposure to 1.5% ethanol causes substantial apoptosis and abrogated retinal and CNS development in zebrafish embryos. Chronic exposure to ethanol for 24h before hatching also induces apoptosis and retinal disorder. After the 2-day post-fertilization (dpf) stage, chronic exposure to ethanol continued to induce apoptosis, but did not block retinal differentiation. Although continuous ethanol exposure induces substantial accumulation of reactive oxygen species (ROS) and increases p53 expression, depletion of p53 did not eliminate ethanol-induced apoptosis. On the other hand, sequestering ROS with the antioxidant reagent N-acetylcysteine (NAC) successfully inhibited ethanol-associated apoptosis, suggesting that the ethanol-induced cell death primarily results from ROS accumulation. Continuous ethanol treatment of embryos reduced expression of the mature neural and photoreceptor markers elavl3/huC, rho, and crx; in addition, expression of the neural and retinal progenitor markers ascl1b and pax6b was maintained at the undifferentiated stage, indicating that retinal and CNS neural progenitor cells failed to undergo further differentiation. Moreover, ethanol treatment enhanced BrdU incorporation, histone H3 phosphorylation, and pcna expression in neural progenitor cells, thereby maintaining a high rate of proliferation. Ethanol treatment also resulted in sustained transcription of ccnd1/cyclin D1 and ccne/cyclin E throughout development in neural progenitor cells, without an appropriate increase of cdkn1b/p27 and cdkn1c/p57 expression, suggesting that these cells failed to exit from the cell cycle. Although NAC was able to mitigate ethanol-mediated apoptosis, it was unable to ameliorate the defects in visual and CNS neural differentiation, suggesting that abrogated neural development in ethanol-exposed embryos is unlikely to arise from excessive apoptosis. In conclusion, we demonstrate that the pathological effect of ethanol on zebrafish embryos is partially attributable to cell death and inhibition of visual and CNS neuron differentiation. Excessive apoptosis largely results from the accumulation of ROS, whereas abrogated neural development is caused by failure of cell cycle arrest, which in turn prevents a successful transition from proliferation to differentiation.


Assuntos
Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Etanol/toxicidade , Neurogênese/efeitos dos fármacos , Retina/efeitos dos fármacos , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Etanol/antagonistas & inibidores , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Retina/crescimento & desenvolvimento , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Peixe-Zebra
4.
Toxicol Sci ; 103(1): 158-68, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18308702

RESUMO

Cytochrome P450 1B1 (CYP1B1) is a heme-containing monooxygenase that metabolizes various polycyclic aromatic hydrocarbons and aryl amines, as well as retinoic acid and steroid hormones. Here we report the cloning of an ortholog of CYP1B1 from zebrafish and the demonstration that transcription of zebrafish CYP1B1 was modulated by two types of mechanisms during different developmental stage. First in late pharyngula stage before hatching, CYP1B1 was constitutively transcribed in retina, midbrain-hindbrain boundary and diencephalon regions through a close coordination between aryl hydrocarbon receptor 2 (AHR2)-dependent and AHR2-independent pathways. After hatching, the basal transcription was attenuated and it could not be elicited upon 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. In contrast, TCDD exposure induced de novo CYP1B1 transcription in larval branchial arches and heart tissues via an AHR2-dependent pathway. Blocking AHR2 translation completely eliminated the TCDD-mediated CYP1B1 transcription. However, we did not detect any types of CYP1B1 transcription in liver and kidney tissues through the developmental stage. It suggests that the constitutive and TCDD-inducible types of CYP1B1 transcriptions are modulated by distinct pathways with different tissue specificities. Finally, we investigated the role of CYP1B1 in TCDD-mediated embryonic toxicity. Because knockdown of CYP1B1 did not prevent TCDD-induced pericardial edema and cranial defects, it suggests that CYP1B1 is not involved in the developmental toxicity of dioxin.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Transcrição Gênica/efeitos dos fármacos , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Hidrocarboneto de Aril Hidroxilases/química , Sequência de Bases , Clonagem Molecular , Citocromo P-450 CYP1B1 , Primers do DNA , Hibridização In Situ , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Receptores de Hidrocarboneto Arílico/fisiologia , Homologia de Sequência de Aminoácidos
5.
Taiwan J Obstet Gynecol ; 45(4): 307-12, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17175487

RESUMO

OBJECTIVE: To evaluate the expression of estrogen receptors (ER) alpha and beta, and activity of alkaline phosphatase during differentiation of primary osteoblast cells (hOB) from aged postmenopausal women and human osteosarcoma cell lines (HOS, MG63). MATERIALS AND METHODS: Osteoblast cultures were prepared from the upper femur of postmenopausal patients (age, 60-74 years) and HOS. At the indicated times (days 5, 10, 15, 20, and 25), alkaline phosphatase activity and expression of ERalpha and ERbeta mRNA were evaluated. RESULTS: In both cultures of primary hOB and HOS, alkaline phosphatase activity decreased at the osteoblast proliferation stage, whereas it subsequently increased at the matrix maturation stage. ER beta mRNA was strongly expressed in HOS on day 15 and remained at high levels of transcription through to day 25 (matrix maturation phase), whereas ERalpha mRNA was barely detectable during osteoblast differentiation. In hOB, transcription of ERalpha mRNA was much stronger than that of ERbeta mRNA. CONCLUSION: The presence of ERalpha and ERbeta mRNA in osteoblasts supports the involvement of estrogen in human bone formation. The developmental expression of alkaline phosphatase was not correlated to ER mRNA expression during osteoblast differentiation. ER isoforms may have different functions or interact with each other during osteoblast differentiation. Since the expression of ER isoforms is different between postmenopausal women and osteosarcoma cell lines, characteristics of osteosarcoma cell lines may not be suitable as a model for the evaluation of estrogen effects on postmenopausal osteoporosis.


Assuntos
Fosfatase Alcalina/metabolismo , Diferenciação Celular/fisiologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Osteoblastos/metabolismo , Pós-Menopausa/metabolismo , Idoso , Linhagem Celular Tumoral , Feminino , Fêmur/citologia , Humanos , Pessoa de Meia-Idade , Osteoblastos/citologia , Osteossarcoma/metabolismo , Osteossarcoma/patologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Chang Gung Med J ; 27(2): 107-15, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15095955

RESUMO

BACKGROUND: Postmenopausal osteoporosis is associated with estrogen deficiency. Estrogens have effects on bone metabolism, which are mediated by estrogen receptors (ERs). If estrogen responsiveness is related to the ER expression level, ER expression in postmenopausal women should be different from previous studies using osteoblast lineage. We investigated the expression of variant isoforms of ER messenger ribonucleic acid (mRNA) in osteoblasts (OB) from postmenopausal women and a human osteosarcoma cell line, MG 63. METHODS: Osteoblast cultures were prepared from the upper femur of postmenopausal patients or MG 63. For OB cultures at 5, 10, 15, 20, and 25 days, the expressions of ERalpha and beta mRNA were examined using reverse transcriptase-polymerase chain reaction. RESULTS: In MG 63, ERbeta mRNA was constantly and highly expressed during the 25-day culture, whereas ERalpha mRNA was barely detected. In the primary OB cells, both ERalpha and beta mRNA were transcribed during the 25-day culture, but expression of ERalpha mRNA was much stronger than that of ERbeta mRNA. A splice variant form of ERbeta mRNA that was missing the entire exon 2 (ERbeta delta 2) was detected and heterogeneously expressed in OB cultures from 16 postmenopausal women. CONCLUSION: Differential expressions of these ER isoforms suggest that they may have different functions or that they interact with each other during bone metabolism. The different ratio of ERbeta to ERbeta delta 2 mRNA or ERalpha to ERbeta mRNA expressions in osteoblast cultures may be related to different bone conditions. Whether the presence of ERbeta delta 2 in postmenopausal women influences the biological properties of bone needs to be determined.


Assuntos
Éxons/genética , Deleção de Genes , Osteoblastos/química , Pós-Menopausa/fisiologia , Receptores de Estrogênio/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Feminino , Humanos , Osteossarcoma/metabolismo , RNA Mensageiro/análise
7.
Mech Dev ; 110(1-2): 231-5, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11744389

RESUMO

Recently we isolated a homolog of the Drosophila single-minded (sim) gene from a zebrafish cDNA library. The 4380-bp of zebrafish sim cDNA encodes a polypeptide of 585 amino acids with strikingly conserved bHLH and PAS A/B domains in the amino-terminal region. During embryogenesis, sim mRNA appears in the animal hemisphere as early as 3 h post-fertilization and is expressed in a widespread pattern throughout the epiblast at the 75% epiboly stage. During the segmentation stage, sim mRNA is prominently expressed in the primordium of the hindbrain and appears as a transverse stripe in the epithelial layers of the mid-diencephalic boundary (MDB). During the pharyngula stage, sim is no longer expressed in the hindbrain, but continues to be expressed in the MDB and extends to the caudal diencephalon along the ventral midline. In addition, sim mRNA is prominent in the two pharyngeal arches. During the larval stage, sim mRNA is transcribed in the esophagus, liver, pancreas, and intestine. In contrast, sim mRNA is no longer detectable in the forebrain after hatching. In adult fish, sim is widely expressed in brain, eyes, gill, heart, liver, and intestine.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos , DNA Complementar/genética , Proteínas de Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Larva/crescimento & desenvolvimento , Larva/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA