Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(46): e2312677120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931101

RESUMO

We have previously reported that the cortical bone thinning seen in mice lacking the Wnt signaling antagonist Sfrp4 is due in part to impaired periosteal apposition. The periosteum contains cells which function as a reservoir of stem cells and contribute to cortical bone expansion, homeostasis, and repair. However, the local or paracrine factors that govern stem cells within the periosteal niche remain elusive. Cathepsin K (Ctsk), together with additional stem cell surface markers, marks a subset of periosteal stem cells (PSCs) which possess self-renewal ability and inducible multipotency. Sfrp4 is expressed in periosteal Ctsk-lineage cells, and Sfrp4 global deletion decreases the pool of PSCs, impairs their clonal multipotency for differentiation into osteoblasts and chondrocytes and formation of bone organoids. Bulk RNA sequencing analysis of Ctsk-lineage PSCs demonstrated that Sfrp4 deletion down-regulates signaling pathways associated with skeletal development, positive regulation of bone mineralization, and wound healing. Supporting these findings, Sfrp4 deletion hampers the periosteal response to bone injury and impairs Ctsk-lineage periosteal cell recruitment. Ctsk-lineage PSCs express the PTH receptor and PTH treatment increases the % of PSCs, a response not seen in the absence of Sfrp4. Importantly, in the absence of Sfrp4, PTH-dependent increase in cortical thickness and periosteal bone formation is markedly impaired. Thus, this study provides insights into the regulation of a specific population of periosteal cells by a secreted local factor, and shows a central role for Sfrp4 in the regulation of Ctsk-lineage periosteal stem cell differentiation and function.


Assuntos
Osteogênese , Nicho de Células-Tronco , Camundongos , Animais , Catepsina K/metabolismo , Periósteo/metabolismo , Diferenciação Celular/genética , Via de Sinalização Wnt , Proteínas Proto-Oncogênicas/metabolismo
2.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870958

RESUMO

Osteocytes express parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptors and respond to the PTHrP analog abaloparatide (ABL) and to the PTH 1-34 fragment teriparatide (TPTD), which are used to treat osteoporosis. Several studies indicate overlapping but distinct skeletal responses to ABL or TPTD, but their effects on cortical bone may differ. Little is known about their differential effects on osteocytes. We compared cortical osteocyte and skeletal responses to ABL and TPTD in sham-operated and ovariectomized mice. Administered 7 weeks after ovariectomy for 4 weeks at a dose of 40 µg/kg/d, TPTD and ABL had similar effects on trabecular bone, but ABL showed stronger effects in cortical bone. In cortical osteocytes, both treatments decreased lacunar area, reflecting altered peri-lacunar remodeling favoring matrix accumulation. Osteocyte RNA-Seq revealed that several genes and pathways were altered by ovariectomy and affected similarly by TPTD and ABL. Notwithstanding, several signaling pathways were uniquely regulated by ABL. Thus, in mice, TPTD and ABL induced a positive osteocyte peri-lacunar remodeling balance, but ABL induced stronger cortical responses and affected the osteocyte transcriptome differently. We concluded that ABL affected the cortical osteocyte transcriptome in a manner subtly different from TPTD, resulting in more beneficial remodeling/modeling changes and homeostasis of the cortex.


Assuntos
Proteína Relacionada ao Hormônio Paratireóideo , Teriparatida , Feminino , Camundongos , Animais , Teriparatida/farmacologia , Teriparatida/uso terapêutico , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Osteócitos/metabolismo , Transcriptoma , Estrogênios/farmacologia
3.
Connect Tissue Res ; 63(2): 97-111, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-31868022

RESUMO

Introduction: With age, the number of adipocytes and osteoclasts increases, the number of osteoblasts decreases, and mechano-adaptation is impaired.Objectives: Using marrow aspiration, which has a known osteogenic effect in young mice, we sought to recruit osteoblast progenitors to mediate the mechano-adaptive response to in vivo tibial loading.Methods: First, we assessed bone formation and marrow adiposity in the tibiae of old mice (>20 months) sacrificed 1, 2, and 4 weeks after unilateral marrow aspiration. Then, we examined the effects of marrow aspiration on mechano-adaptation in aged mice using tibial loading.Results: Two weeks after aspiration, aspirated tibiae had more bone than contralateral tibiae due to the formation of bone in the medullary canal. Two weeks and four weeks after marrow aspiration, the volume of marrow adipose tissue was higher in the aspirated tibiae, compared to contralateral tibiae. Histomorphometry indicated that aspiration increased non-periosteal (endosteal, intracortical, intramedullary) bone formation, compared to the contralateral tibia.  Mice with marrow aspiration had reduced periosteal bone formation in the contralateral tibia, compared to mice that had loading alone. Loading-induced periosteal bone formation was higher in mice that had loading alone, compared to mice that had aspiration + loading, indicating that aspiration further reduced the mechano-adaptive response.Conclusion: These data demonstrate that, in old mice, bone forms in the medullary canal following aspiration. Adiposity is increased following marrow aspiration, and periosteal mechano-adaptation is reduced.


Assuntos
Medula Óssea , Osteogênese , Tecido Adiposo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia , Tíbia
4.
Aging Cell ; 20(3): e13313, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33561324

RESUMO

Pregnancy-associated plasma protein-A (PAPP-A) is a secreted metalloprotease that increases insulin-like growth factor (IGF) availability by cleaving IGF-binding proteins. Reduced IGF signaling extends longevity in multiple species, and consistent with this, PAPP-A deletion extends lifespan and healthspan; however, the mechanism remains unclear. To clarify PAPP-A's role, we developed a PAPP-A neutralizing antibody and treated adult mice with it. Transcriptomic profiling across tissues showed that anti-PAPP-A reduced IGF signaling and extracellular matrix (ECM) gene expression system wide. The greatest reduction in IGF signaling occurred in the bone marrow, where we found reduced bone, marrow adiposity, and myelopoiesis. These diverse effects led us to search for unifying mechanisms. We identified mesenchymal stromal cells (MSCs) as the source of PAPP-A in bone marrow and primary responders to PAPP-A inhibition. Mice treated with anti-PAPP-A had reduced IGF signaling in MSCs and dramatically decreased MSC number. As MSCs are (1) a major source of ECM and the progenitors of ECM-producing fibroblasts, (2) the originating source of adult bone, (3) regulators of marrow adiposity, and (4) an essential component of the hematopoietic niche, our data suggest that PAPP-A modulates bone marrow homeostasis by potentiating the number and activity of MSCs. We found that MSC-like cells are the major source of PAPP-A in other tissues also, suggesting that reduced MSC-like cell activity drives the system-wide reduction in ECM gene expression due to PAPP-A inhibition. Dysregulated ECM production is associated with aging and drives age-related diseases, and thus, this may be a mechanism by which PAPP-A deficiency enhances longevity.


Assuntos
Homeostase , Longevidade , Células-Tronco Mesenquimais/metabolismo , Proteína Plasmática A Associada à Gravidez/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/metabolismo , Medula Óssea/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Mielopoese , Osteoblastos/metabolismo , Osteogênese , Proteína Plasmática A Associada à Gravidez/metabolismo , Transdução de Sinais , Somatomedinas/metabolismo
5.
Bone ; 144: 115801, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33338664

RESUMO

Disuse osteoporosis can result from prolonged bed rest, paralysis, casts, braces, fractures and other conditions. Abaloparatide (ABL) is a PTHrP analog that increases bone density and strength by stimulating osteogenesis with limited effects on bone resorption. We examined skeletal responses to abaloparatide in young adult male rats with normal weight-bearing and with hindlimb unloading via a pelvic harness. Rats were allocated to four groups (10-12 per group): normal weight-bearing plus vehicle treatment (CON-VEH), normal weight-bearing plus ABL treatment (CON-ABL), hindlimb-unloading plus vehicle (HLU-VEH), or hindlimb-unloading plus ABL (HLU-ABL). Rats received ABL (25 µg/kg/day, s.c.) or vehicle throughout the 28-day unloading period and were then sacrificed, at which time HLU-VEH rats exhibited reduced bone formation and significant deficits in tibial, femoral, and vertebral bone mass compared with CON-VEH. ABL treatment increased serum osteocalcin in CON and HLU animals while having no effect on the osteoclast marker TRACP-5b. Longitudinal peripheral quantitative computed tomography (pQCT) indicated that ABL increased trabecular and cortical bone mass in the tibia. ABL was also associated with improved trabecular and cortical bone mass and architectural parameters at the femur, tibia, and vertebrae by µCT. Tibial histomorphometry indicated increased trabecular and endocortical bone formation with HLU-ABL versus HLU-VEH and with CON-ABL versus CON-VEH, and ABL was also associated with lower trabecular and endocortical osteoclast surfaces. Vertebral finite element analysis indicated higher ultimate load and stiffness for CON-ABL versus CON-VEH and for HLU-ABL versus HLU-VEH. In summary, ABL was associated with improved trabecular and cortical bone density and architecture in normal weight-bearing and hindlimb-unloaded rats, with higher bone formation and no difference in bone resorption. ABL was also associated with improved bone biomechanical parameters. These results provide rationale for investigating the ability of abaloparatide to prevent or treat disuse osteoporosis in humans.


Assuntos
Densidade Óssea , Reabsorção Óssea , Animais , Reabsorção Óssea/tratamento farmacológico , Elevação dos Membros Posteriores , Masculino , Osteogênese , Proteína Relacionada ao Hormônio Paratireóideo , Ratos , Microtomografia por Raio-X
6.
Proc Natl Acad Sci U S A ; 116(28): 14138-14143, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239337

RESUMO

Loss-of-function mutations in the Wnt inhibitor secreted frizzled receptor protein 4 (SFRP4) cause Pyle's disease (OMIM 265900), a rare skeletal disorder characterized by wide metaphyses, significant thinning of cortical bone, and fragility fractures. In mice, we have shown that the cortical thinning seen in the absence of Sfrp4 is associated with decreased periosteal and endosteal bone formation and increased endocortical resorption. While the increase in Rankl/Opg in cortical bone of mice lacking Sfrp4 suggests an osteoblast-dependent effect on endocortical osteoclast (OC) activity, whether Sfrp4 can cell-autonomously affect OCs is not known. We found that Sfrp4 is expressed during bone marrow macrophage OC differentiation and that Sfrp4 significantly suppresses the ability of early and late OC precursors to respond to Rankl-induced OC differentiation. Sfrp4 deletion in OCs resulted in activation of canonical Wnt/ß-catenin and noncanonical Wnt/Ror2/Jnk signaling cascades. However, while inhibition of canonical Wnt/ß-catenin signaling did not alter the effect of Sfrp4 on OCgenesis, blocking the noncanonical Wnt/Ror2/Jnk cascade markedly suppressed its regulation of OC differentiation in vitro. Importantly, we report that deletion of Ror2 exclusively in OCs (CtskCreRor2fl/fl ) in Sfrp4 null mice significantly reversed the increased number of endosteal OCs seen in these mice and reduced their cortical thinning. Altogether, these data show autocrine and paracrine effects of Sfrp4 in regulating OCgenesis and demonstrate that the increase in endosteal OCs seen in Sfrp4-/- mice is a consequence of noncanonical Wnt/Ror2/Jnk signaling activation in OCs overriding the negative effect that activation of canonical Wnt/ß-catenin signaling has on OCgenesis.


Assuntos
Reabsorção Óssea/genética , MAP Quinase Quinase 4/genética , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Animais , Comunicação Autócrina/genética , Reabsorção Óssea/patologia , Osso e Ossos/metabolismo , Diferenciação Celular/genética , Osso Cortical/crescimento & desenvolvimento , Osso Cortical/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteocondrodisplasias/genética , Osteoclastos/patologia , Comunicação Parácrina/genética , Deleção de Sequência , Via de Sinalização Wnt/genética
7.
Calcif Tissue Int ; 105(3): 316-330, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31243483

RESUMO

The mechano-adaptive response of bone to loading in the murine uniaxial tibial loading model is impaired in aged animals. Previous studies have shown that in aged mice, the amount of bone formed in response to loading is augmented when loads are applied following sciatic neurectomy. The synergistic effect of neurectomy and loading remains to be elucidated. We hypothesize that sciatic neurectomy increases cellular presence, thereby augmenting the response to load in aged mice. We examined bone adaptation in four groups of female C57BL/6J mice, 20-22 months old: (1) sham surgery + 9N loading; (2) sciatic neurectomy, sacrificed after 5 days; (3) sciatic neurectomy, sacrificed after 19 days; (4) sciatic neurectomy + 9N loading. We examined changes in bone cross sectional properties with micro-CT images, and static and dynamic histomorphometry with histological sections taken at the midpoint between tibiofibular junctions. The response to loading at 9N was not detectable with quantitative micro-CT data, but surface-specific histomorphometry captured an increase in bone formation in specific regions. 5 days following sciatic neurectomy, the amount of bone in the neurectomized leg was the same as the contralateral leg, but 19 days following sciatic neurectomy, there was significant bone loss in the neurectomized leg, and both osteoclasts and osteoblasts were recruited to the endosteal surfaces. When sciatic neurectomy and loading at 9N were combined, 3 out of 4 bone quadrants had increased bone formation, on the endosteal and periosteal surfaces (increased osteoid surface and mineralizing surface respectively). These data demonstrate that sciatic neurectomy increases cellular presence on the endosteal surface. With long-term sciatic-neurectomy, both osteoclasts and osteoblasts were recruited to the endosteal surface, which resulted in increased bone formation when combined with a sufficient mechanical stimulus. Controlled and localized recruitment of both osteoblasts and osteoclasts combined with appropriate mechanical loading could inform therapies for mechanically-directed bone formation.


Assuntos
Adaptação Fisiológica/fisiologia , Envelhecimento/fisiologia , Proliferação de Células/fisiologia , Fenômenos Mecânicos , Osteogênese/fisiologia , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Animais , Denervação , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tíbia , Suporte de Carga/fisiologia , Microtomografia por Raio-X
8.
Bone ; 124: 148-157, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31051317

RESUMO

Androgen deficiency is a leading cause of male osteoporosis, with bone loss driven by an inadequate level of bone formation relative to the extent of bone resorption. Abaloparatide, an osteoanabolic PTH receptor agonist used to treat women with postmenopausal osteoporosis at high risk for fracture, increases bone formation and bone strength in estrogen-deficient animals without increasing bone resorption. This study examined the effects of abaloparatide on bone formation, bone mass, and bone strength in androgen-deficient orchiectomized (ORX) rats, a male osteoporosis model. Four-month-old Sprague-Dawley rats underwent ORX or sham surgery. Eight weeks later, sham-operated rats received vehicle (saline; n = 10) while ORX rats (n = 10/group) received vehicle (Veh) or abaloparatide at 5 or 25 µg/kg (ABL5 or ABL25) by daily s.c. injection for 8 weeks, followed by sacrifice. Dynamic bone histomorphometry indicated that the tibial diaphysis of one or both abaloparatide groups had higher periosteal mineralizing surface, intracortical bone formation rate (BFR), endocortical BFR, and cortical thickness vs Veh controls. Vertebral trabecular BFR was also higher in both abaloparatide groups vs Veh, and the ABL25 group had higher trabecular osteoblast surface without increased osteoclast surface. By micro-CT, the vertebra and distal femur of both abaloparatide-groups had improved trabecular bone volume and micro-architecture, and the femur diaphysis of the ABL25 group had greater cortical thickness with no increase in porosity vs Veh. Biomechanical testing indicated that both abaloparatide-groups had stronger vertebrae and femoral necks vs Veh controls. These findings provide preclinical support for evaluating abaloparatide as an investigational treatment for male osteoporosis.


Assuntos
Osso Esponjoso/patologia , Osso Cortical/patologia , Colo do Fêmur/patologia , Colo do Fêmur/fisiopatologia , Osteoporose/patologia , Osteoporose/fisiopatologia , Proteína Relacionada ao Hormônio Paratireóideo/uso terapêutico , Coluna Vertebral/fisiopatologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/efeitos dos fármacos , Modelos Animais de Doenças , Colo do Fêmur/diagnóstico por imagem , Masculino , Tamanho do Órgão/efeitos dos fármacos , Osteoporose/diagnóstico por imagem , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Ratos Sprague-Dawley , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/efeitos dos fármacos , Coluna Vertebral/patologia , Microtomografia por Raio-X
9.
Bone ; 120: 487-494, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30586636

RESUMO

The uniaxial tibial loading model is commonly used to promote bone formation through mechanoadaptation in mice. Sciatic neurectomy on the other hand recruits osteoclasts, which results in bone loss. Previous studies have shown that combining sciatic neurectomy with high magnitude loading increases the amount of bone formed. Here we determine whether low-intensity loading (low magnitude and few cycles) is sufficient to maintain bone mass after sciatic neurectomy, either by promoting bone formation (balance between concurrent resorption and formation), or by preventing bone resorption altogether. We examined bone adaptation in 4 groups of female C57BL/6J mice, 19-22 weeks old: (1) sham surgery +10 N loading; (2) sham surgery +5 N loading; (3) sciatic neurectomy; (4) sciatic neurectomy +5 N loading. Left legs were kept intact as internal controls. We examined changes in bone cross sectional properties and marrow area with micro-CT images, and histomorphometric measures with histological sections at the midpoint between tibiofibular junctions. Loading at 10 N caused a significant increase in the amount of bone, but bone formation after 5 N of loading was not detectable in micro-CT images. There was significant bone loss in mice with sciatic neurectomy alone, but when combined with loading there was no significant bone loss. Histomorphometric analyses showed that loading at 5 N augmented bone formation periosteally on the lateral and posterior-medial surfaces, and reduced the number of endosteal osteoclasts on the posterior-medial surface compared to the contralateral leg. Combining sciatic neurectomy and loading at 5 N promoted faster mineral apposition on the periosteal lateral surface and augmented bone resorption on the endosteal posterior surface compared to the contralateral leg. These data demonstrate that low-intensity loading is sufficient to maintain bone mass after sciatic neurectomy, both by preventing recruitment of osteoclasts on the endosteal surface and by compensating endosteal resorption caused by disuse with periosteal formation promoted by loading. This has implications for the loading required to maintain bone mass after injury or prolonged bedrest.


Assuntos
Adaptação Fisiológica , Reabsorção Óssea/fisiopatologia , Osso e Ossos/fisiopatologia , Denervação , Nervo Isquiático/fisiopatologia , Nervo Isquiático/cirurgia , Animais , Reabsorção Óssea/patologia , Osso e Ossos/patologia , Osso Cortical/fisiopatologia , Feminino , Corantes Fluorescentes/metabolismo , Camundongos Endogâmicos C57BL , Tíbia/patologia , Tíbia/fisiopatologia , Suporte de Carga
10.
J Clin Invest ; 128(4): 1283-1299, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29480818

RESUMO

The unfolded protein response (UPR) is a cellular homeostatic mechanism that is activated in many human cancers and plays pivotal roles in tumor progression and therapy resistance. However, the molecular mechanisms for UPR activation and regulation in cancer cells remain elusive. Here, we show that oncogenic MYC regulates the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) branch of the UPR in breast cancer via multiple mechanisms. We found that MYC directly controls IRE1 transcription by binding to its promoter and enhancer. Furthermore, MYC forms a transcriptional complex with XBP1, a target of IRE1, and enhances its transcriptional activity. Importantly, we demonstrate that XBP1 is a synthetic lethal partner of MYC. Silencing of XBP1 selectively blocked the growth of MYC-hyperactivated cells. Pharmacological inhibition of IRE1 RNase activity with small molecule inhibitor 8866 selectively restrained the MYC-overexpressing tumor growth in vivo in a cohort of preclinical patient-derived xenograft models and genetically engineered mouse models. Strikingly, 8866 substantially enhanced the efficacy of docetaxel chemotherapy, resulting in rapid regression of MYC-overexpressing tumors. Collectively, these data establish the synthetic lethal interaction of the IRE1/XBP1 pathway with MYC hyperactivation and provide a potential therapy for MYC-driven human breast cancers.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Docetaxel/farmacologia , Sistemas de Liberação de Medicamentos , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Elementos de Resposta , Transdução de Sinais/efeitos dos fármacos , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Endorribonucleases/genética , Feminino , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-myc/genética , Saccharomyces cerevisiae , Transdução de Sinais/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética , Proteína 1 de Ligação a X-Box/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Proc Natl Acad Sci U S A ; 115(3): E418-E427, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29158412

RESUMO

Fibrous dysplasia (FD; Online Mendelian Inheritance in Man no. 174800) is a crippling skeletal disease caused by activating mutations of the GNAS gene, which encodes the stimulatory G protein Gαs FD can lead to severe adverse conditions such as bone deformity, fracture, and severe pain, leading to functional impairment and wheelchair confinement. So far there is no cure, as the underlying molecular and cellular mechanisms remain largely unknown and the lack of appropriate animal models has severely hampered FD research. Here we have investigated the cellular and molecular mechanisms underlying FD and tested its potential treatment by establishing a mouse model in which the human FD mutation (R201H) has been conditionally knocked into the corresponding mouse Gnas locus. We found that the germ-line FD mutant was embryonic lethal, and Cre-induced Gnas FD mutant expression in early osteochondral progenitors, osteoblast cells, or bone marrow stromal cells (BMSCs) recapitulated FD features. In addition, mosaic expression of FD mutant Gαs in BMSCs induced bone marrow fibrosis both cell autonomously and non-cell autonomously. Furthermore, Wnt/ß-catenin signaling was up-regulated in FD mutant mouse bone and BMSCs undergoing osteogenic differentiation, as we have found in FD human tissue previously. Reduction of Wnt/ß-catenin signaling by removing one Lrp6 copy in an FD mutant line significantly rescued the phenotypes. We demonstrate that induced expression of the FD Gαs mutant from the mouse endogenous Gnas locus exhibits human FD phenotypes in vivo, and that inhibitors of Wnt/ß-catenin signaling may be repurposed for treating FD and other bone diseases caused by Gαs activation.


Assuntos
Cromograninas/metabolismo , Displasia Fibrosa Óssea/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Diferenciação Celular , Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/fisiologia , Mutação , Osteoblastos/fisiologia , Transdução de Sinais , Regulação para Cima , Proteínas Wnt/genética , beta Catenina/genética
12.
J Am Soc Nephrol ; 28(4): 1073-1078, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27799484

RESUMO

Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is critical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the molecular identity of the protein(s) participating in the basolateral Pi efflux remains unknown. Evidence has suggested that xenotropic and polytropic retroviral receptor 1 (XPR1) might be involved in this process. Here, we show that conditional inactivation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi reabsorption. Analysis of Pi transport in primary cultures of proximal tubular cells or in freshly isolated renal tubules revealed that this Xpr1 deficiency significantly affected Pi efflux. Further, mice with conditional inactivation of Xpr1 in the renal tubule exhibited generalized proximal tubular dysfunction indicative of Fanconi syndrome, characterized by glycosuria, aminoaciduria, calciuria, and albuminuria. Dramatic alterations in the renal transcriptome, including a significant reduction in NaPi-IIa/NaPi-IIc expression, accompanied these functional changes. Additionally, Xpr1-deficient mice developed hypophosphatemic rickets secondary to renal dysfunction. These results identify XPR1 as a major regulator of Pi homeostasis and as a potential therapeutic target in bone and kidney disorders.


Assuntos
Síndrome de Fanconi/etiologia , Néfrons , Receptores Acoplados a Proteínas G/fisiologia , Receptores Virais/fisiologia , Raquitismo Hipofosfatêmico/etiologia , Animais , Feminino , Masculino , Camundongos , Receptor do Retrovírus Politrópico e Xenotrópico
13.
J Bone Miner Res ; 31(6): 1225-34, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26763740

RESUMO

Sclerostin is a potent inhibitor of osteoblastogenesis. Interestingly, newly diagnosed multiple myeloma (MM) patients have high levels of circulating sclerostin that correlate with disease stage and fractures. However, the source and impact of sclerostin in MM remains to be defined. Our goal was to determine the role of sclerostin in the biology of MM and its bone microenvironment as well as investigate the effect of targeting sclerostin with a neutralizing antibody (scl-Ab) in MM bone disease. Here we confirm increased sclerostin levels in MM compared with precursor disease states like monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM. Furthermore, we found that a humanized MM xenograft mouse model bearing human MM cells (NOD-SCID.CB17 male mice injected intravenously with 2.5 million of MM1.S-Luc-GFP cells) demonstrated significantly higher concentrations of mouse-derived sclerostin, suggesting a microenvironmental source of sclerostin. Associated with the increased sclerostin levels, activated ß-catenin expression levels were lower than normal in MM mouse bone marrow. Importantly, a high-affinity grade scl-Ab reversed osteolytic bone disease in this animal model. Because scl-Ab did not demonstrate significant in vitro anti-MM activity, we combined it with the proteasome inhibitor carfilzomib. Our data demonstrated that this combination therapy significantly inhibited tumor burden and improved bone disease in our in vivo MM mouse model. In agreement with our in vivo data, sclerostin expression was noted in marrow stromal cells and osteoblasts of MM patient bone marrow samples. Moreover, MM cells stimulated sclerostin expression in immature osteoblasts while inhibiting osteoblast differentiation in vitro. This was in part regulated by Dkk-1 secreted by MM cells and is a potential mechanism contributing to the osteoblast dysfunction noted in MM. Our data confirm the role of sclerostin as a potential therapeutic target in MM bone disease and provides the rationale for studying scl-Ab combined with proteasome inhibitors in MM. © 2016 American Society for Bone and Mineral Research.


Assuntos
Doenças Ósseas/metabolismo , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/metabolismo , Osteoblastos/metabolismo , Microambiente Tumoral , Proteínas Adaptadoras de Transdução de Sinal , Animais , Doenças Ósseas/genética , Doenças Ósseas/patologia , Feminino , Glicoproteínas/genética , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Osteoblastos/patologia
14.
J Exp Med ; 212(8): 1283-301, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26195726

RESUMO

Physiological bone remodeling requires that bone formation by osteoblasts be tightly coupled to bone resorption by osteoclasts. However, relatively little is understood about how this coupling is regulated. Here, we demonstrate that modulation of NF-κB signaling in osteoclasts via a novel activity of charged multivesicular body protein 5 (CHMP5) is a key determinant of systemic rates of bone turnover. A conditional deletion of CHMP5 in osteoclasts leads to increased bone resorption by osteoclasts coupled with exuberant bone formation by osteoblasts, resembling an early onset, polyostotic form of human Paget's disease of bone (PDB). These phenotypes are reversed by haploinsufficiency for Rank, as well as by antiresorptive treatments, including alendronate, zolendronate, and OPG-Fc. Accordingly, CHMP5-deficient osteoclasts display increased RANKL-induced NF-κB activation and osteoclast differentiation. Biochemical analysis demonstrated that CHMP5 cooperates with the PDB genetic risk factor valosin-containing protein (VCP/p97) to stabilize the inhibitor of NF-κBα (IκBα), down-regulating ubiquitination of IκBα via the deubiquitinating enzyme USP15. Thus, CHMP5 tunes NF-κB signaling downstream of RANK in osteoclasts to dampen osteoclast differentiation, osteoblast coupling and bone turnover rates, and disruption of CHMP5 activity results in a PDB-like skeletal disorder.


Assuntos
Desenvolvimento Ósseo/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Transdução de Sinais/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Sequência de Bases , Desenvolvimento Ósseo/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , Primers do DNA/genética , Imunofluorescência , Células HEK293 , Humanos , Proteínas I-kappa B/metabolismo , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , Luciferases , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Inibidor de NF-kappaB alfa , Osteoblastos/citologia , Ligante RANK/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Ubiquitinação , Proteína com Valosina
15.
Development ; 142(3): 438-43, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25564652

RESUMO

Cell-based bone regeneration strategies offer promise for traumatic bone injuries, congenital defects, non-union fractures and other skeletal pathologies. Postnatal bone remodeling and fracture healing provide evidence that an osteochondroprogenitor cell is present in adult life that can differentiate to remodel or repair the fractured bone. However, cell-based skeletal repair in the clinic is still in its infancy, mostly due to poor characterization of progenitor cells and lack of knowledge about their in vivo behavior. Here, we took a combined approach of high-throughput screening, flow-based cell sorting and in vivo transplantation to isolate markers that identify osteochondroprogenitor cells. We show that the presence of tetraspanin CD9 enriches for osteochondroprogenitors within CD105(+) mesenchymal cells and that these cells readily form bone upon transplantation. In addition, we have used Thy1.2 and the ectonucleotidase CD73 to identify subsets within the CD9(+) population that lead to endochondral or intramembranous-like bone formation. Utilization of this unique cell surface phenotype to enrich for osteochondroprogenitor cells will allow for further characterization of the molecular mechanisms that regulate their osteogenic properties.


Assuntos
Biomarcadores/metabolismo , Regeneração Óssea/fisiologia , Condrócitos/fisiologia , Osteoblastos/fisiologia , Células-Tronco/fisiologia , 5'-Nucleotidase/metabolismo , Animais , Condrócitos/citologia , Condrócitos/metabolismo , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Processamento de Imagem Assistida por Computador , Rim/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Osteoblastos/citologia , Osteoblastos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tetraspanina 29/metabolismo , Microtomografia por Raio-X
16.
Nature ; 508(7494): 103-107, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24670641

RESUMO

Cancer cells induce a set of adaptive response pathways to survive in the face of stressors due to inadequate vascularization. One such adaptive pathway is the unfolded protein (UPR) or endoplasmic reticulum (ER) stress response mediated in part by the ER-localized transmembrane sensor IRE1 (ref. 2) and its substrate XBP1 (ref. 3). Previous studies report UPR activation in various human tumours, but the role of XBP1 in cancer progression in mammary epithelial cells is largely unknown. Triple-negative breast cancer (TNBC)--a form of breast cancer in which tumour cells do not express the genes for oestrogen receptor, progesterone receptor and HER2 (also called ERBB2 or NEU)--is a highly aggressive malignancy with limited treatment options. Here we report that XBP1 is activated in TNBC and has a pivotal role in the tumorigenicity and progression of this human breast cancer subtype. In breast cancer cell line models, depletion of XBP1 inhibited tumour growth and tumour relapse and reduced the CD44(high)CD24(low) population. Hypoxia-inducing factor 1α (HIF1α) is known to be hyperactivated in TNBCs. Genome-wide mapping of the XBP1 transcriptional regulatory network revealed that XBP1 drives TNBC tumorigenicity by assembling a transcriptional complex with HIF1α that regulates the expression of HIF1α targets via the recruitment of RNA polymerase II. Analysis of independent cohorts of patients with TNBC revealed a specific XBP1 gene expression signature that was highly correlated with HIF1α and hypoxia-driven signatures and that strongly associated with poor prognosis. Our findings reveal a key function for the XBP1 branch of the UPR in TNBC and indicate that targeting this pathway may offer alternative treatment strategies for this aggressive subtype of breast cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Antígeno CD24/metabolismo , Hipóxia Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Inativação Gênica , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos , Invasividade Neoplásica , Recidiva Local de Neoplasia , Prognóstico , RNA Polimerase II/metabolismo , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcrição Gênica , Neoplasias de Mama Triplo Negativas/irrigação sanguínea , Neoplasias de Mama Triplo Negativas/genética , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box
17.
J Clin Invest ; 123(9): 4010-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23945236

RESUMO

Mice deficient in Schnurri-3 (SHN3; also known as HIVEP3) display increased bone formation, but harnessing this observation for therapeutic benefit requires an improved understanding of how SHN3 functions in osteoblasts. Here we identified SHN3 as a dampener of ERK activity that functions in part downstream of WNT signaling in osteoblasts. A D-domain motif within SHN3 mediated the interaction with and inhibition of ERK activity and osteoblast differentiation, and knockin of a mutation in Shn3 that abolishes this interaction resulted in aberrant ERK activation and consequent osteoblast hyperactivity in vivo. Additionally, in vivo genetic interaction studies demonstrated that crossing to Lrp5(-/-) mice partially rescued the osteosclerotic phenotype of Shn3(-/-) mice; mechanistically, this corresponded to the ability of SHN3 to inhibit ERK-mediated suppression of GSK3ß. Inducible knockdown of Shn3 in adult mice resulted in a high-bone mass phenotype, providing evidence that transient blockade of these pathways in adults holds promise as a therapy for osteoporosis.


Assuntos
Proteínas de Ligação a DNA/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Osteoblastos/metabolismo , Via de Sinalização Wnt , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Proteínas de Ligação a DNA/química , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Humanos , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Osteogênese , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Estrutura Terciária de Proteína , beta Catenina/metabolismo
18.
J Clin Invest ; 122(1): 91-106, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22133875

RESUMO

Mutations in the coactivator CREB-binding protein (CBP) are a major cause of the human skeletal dysplasia Rubinstein-Taybi syndrome (RTS); however, the mechanism by which these mutations affect skeletal mineralization and patterning is unknown. Here, we report the identification of 3-phosphoinositide-dependent kinase 1 (PDK1) as a key regulator of CBP activity and demonstrate that its functions map to both osteoprogenitor cells and mature osteoblasts. In osteoblasts, PDK1 activated the CREB/CBP complex, which in turn controlled runt-related transcription factor 2 (RUNX2) activation and expression of bone morphogenetic protein 2 (BMP2). These pathways also operated in vivo, as evidenced by recapitulation of RTS spectrum phenotypes with osteoblast-specific Pdk1 deletion in mice (Pdk1osx mice) and by the genetic interactions observed in mice heterozygous for both osteoblast-specific Pdk1 deletion and either Runx2 or Creb deletion. Finally, treatment of Pdk1osx and Cbp+/- embryos with BMPs in utero partially reversed their skeletal anomalies at birth. These findings illustrate the in vivo function of the PDK1-AKT-CREB/CBP pathway in bone formation and provide proof of principle for in utero growth factor supplementation as a potential therapy for skeletal dysplasias.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Proteína Morfogenética Óssea 7/administração & dosagem , Proteína de Ligação a CREB/genética , Terapias Fetais/métodos , Proteínas Serina-Treonina Quinases/genética , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/terapia , Animais , Desenvolvimento Ósseo/genética , Desenvolvimento Ósseo/fisiologia , Proteína Morfogenética Óssea 2/genética , Proteína de Ligação a CREB/deficiência , Subunidade alfa 1 de Fator de Ligação ao Core/deficiência , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/deficiência , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Mutação , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Gravidez , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Proteínas Recombinantes/administração & dosagem , Síndrome de Rubinstein-Taybi/embriologia , Síndrome de Rubinstein-Taybi/metabolismo , Transdução de Sinais , Útero
19.
J Clin Invest ; 121(11): 4383-92, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21965325

RESUMO

Mutations in human FYVE, RhoGEF, and PH domain-containing 1 (FGD1) cause faciogenital dysplasia (FGDY; also known as Aarskog syndrome), an X-linked disorder that affects multiple skeletal structures. FGD1 encodes a guanine nucleotide exchange factor (GEF) that specifically activates the Rho GTPase CDC42. However, the mechanisms by which mutations in FGD1 affect skeletal development are unknown. Here, we describe what we believe to be a novel signaling pathway in osteoblasts initiated by FGD1 that involves the MAP3K mixed-lineage kinase 3 (MLK3). We observed that MLK3 functions downstream of FGD1 to regulate ERK and p38 MAPK, which in turn phosphorylate and activate the master regulator of osteoblast differentiation, Runx2. Mutations in FGD1 found in individuals with FGDY ablated its ability to activate MLK3. Consistent with our description of this pathway and the phenotype of patients with FGD1 mutations, mice with a targeted deletion of Mlk3 displayed multiple skeletal defects, including dental abnormalities, deficient calvarial mineralization, and reduced bone mass. Furthermore, mice with knockin of a mutant Mlk3 allele that is resistant to activation by FGD1/CDC42 displayed similar skeletal defects, demonstrating that activation of MLK3 specifically by FGD1/CDC42 is important for skeletal mineralization. Thus, our results provide a putative biochemical mechanism for the skeletal defects in human FGDY and suggest that modulating MAPK signaling may benefit these patients.


Assuntos
Desenvolvimento Ósseo/genética , Desenvolvimento Ósseo/fisiologia , Nanismo/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deformidades Congênitas da Mão/genética , Cardiopatias Congênitas/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/fisiologia , Mutação , Proteínas/genética , Proteínas/fisiologia , Animais , Modelos Animais de Doenças , Nanismo/patologia , Nanismo/fisiopatologia , Ativação Enzimática , Face/anormalidades , Face/patologia , Face/fisiopatologia , Feminino , Técnicas de Introdução de Genes , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Genitália Masculina/anormalidades , Genitália Masculina/patologia , Genitália Masculina/fisiopatologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Deformidades Congênitas da Mão/patologia , Deformidades Congênitas da Mão/fisiopatologia , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/fisiopatologia , Humanos , MAP Quinase Quinase Quinases/deficiência , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Osteoblastos/patologia , Osteoblastos/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
20.
J Clin Invest ; 120(7): 2457-73, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20551513

RESUMO

Nearly every extracellular ligand that has been found to play a role in regulating bone biology acts, at least in part, through MAPK pathways. Nevertheless, much remains to be learned about the contribution of MAPKs to osteoblast biology in vivo. Here we report that the p38 MAPK pathway is required for normal skeletogenesis in mice, as mice with deletion of any of the MAPK pathway member-encoding genes MAPK kinase 3 (Mkk3), Mkk6, p38a, or p38b displayed profoundly reduced bone mass secondary to defective osteoblast differentiation. Among the MAPK kinase kinase (MAP3K) family, we identified TGF-beta-activated kinase 1 (TAK1; also known as MAP3K7) as the critical activator upstream of p38 in osteoblasts. Osteoblast-specific deletion of Tak1 resulted in clavicular hypoplasia and delayed fontanelle fusion, a phenotype similar to the cleidocranial dysplasia observed in humans haploinsufficient for the transcription factor runt-related transcription factor 2 (Runx2). Mechanistic analysis revealed that the TAK1-MKK3/6-p38 MAPK axis phosphorylated Runx2, promoting its association with the coactivator CREB-binding protein (CBP), which was required to regulate osteoblast genetic programs. These findings reveal an in vivo function for p38beta and establish that MAPK signaling is essential for bone formation in vivo. These results also suggest that selective p38beta agonists may represent attractive therapeutic agents to prevent bone loss associated with osteoporosis and aging.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Humanos , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Transgênicos , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/genética , Fosforilação , Proteínas Proto-Oncogênicas , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA