Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Cancer Res ; 13(1): 330-347, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38410212

RESUMO

Background: Liver metastasis (Li) is one of the most common distant metastatic sites for gastric cancer. A deeper understanding of its mechanism of action from a bioinformatics perspective may provide new insights. Therefore, the aim of this study was to use single cell RNA sequencing (scRNA-seq) to evaluate cell subtypes and understand the molecular mechanism of gastric cancer Li. Methods: The scRNA-seq data GSE163558 of gastric cancer and Li were downloaded from Gene Expression Omnibus (GEO). Single cell data were analyzed by various R packages such as Seurat, CellChat, gene set variation analysis (GSVA), monocle, gene set enrichment analysis (GSEA), and survival analysis and the results were plotted by ggplot2, R4.1.1. Protein expression was confirmed by immunohistochemistry in an additional patient cohort. Results: The genes APOD, CXCL5, and JUN are involved in epithelial cell metastasis. The infiltration of cytotoxic CD8 T cells was more frequent in gastric primary tumors (PTs) than in Lis. IL7R high natural killer (NK) cells that had high TXNIP and RIPOR2 expression were located at the site of Li and corresponded to a favorable prognosis. NK cells with high TNFAIP3 expression were located at the PT site and corresponded to a poor prognosis. Furthermore, the gene expression of myeloid cells was different depending on their localization in the PT site or Li. MHC-I signaling pathway was found to be activated in the PT compared to MHC-II at the site of Li, as revealed by cell-cell interaction, and HLA-E-CD94/NKG2A of NK cells was only activated in the PT and not in the Li. Conclusions: The present study revealed the difference between Li and gastric PT by scRNA-seq, demonstrating the impact of partial gene expression on patient prognosis. Our study provides new insights into gastric cancer and Li.

2.
Sci Rep ; 7(1): 3840, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630465

RESUMO

ABSTARCT: Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N2 and CO2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show that the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA