Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Sci Total Environ ; 915: 169853, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38218477

RESUMO

The pollution and toxic effects of hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] have become worldwide public health issues. However, the potential detailed effects of chronic combined Cr(VI) and Ni exposure on colonic inflammation in mice have not been reported. In this study, 16S rDNA sequencing, metabolomics data analysis, qPCR and other related experimental techniques were used to comprehensively explore the mechanism of toxic damage and the inflammatory response of the colon in mice under the co-toxicity of chronic hexavalent chromium and nickel. The results showed that long-term exposure to Cr(VI) and/or Ni resulted in an imbalance of trace elements in the colon of mice with significant inflammatory infiltration of tissues. Moreover, Cr(VI) and/or Ni poisoning upregulated the expression levels of IL-6, IL-18, IL-1ß, TNF-α, IFN-γ, JAK2 and STAT3 mRNA, and downregulated IL-10 mRNA, which was highly consistent with the trend in protein expression. Combined with multiomics analysis, Cr(VI) and/or Ni could change the α diversity and ß diversity of the gut microbiota and induce significant differential changes in metabolites such as Pyroglu-Glu-Lys, Val-Asp-Arg, stearidonic acid, and 20-hydroxyarachidonic acid. They are also associated with disorders of important metabolic pathways such as lipid metabolism and amino acid metabolism. Correlation analysis revealed that there was a significant correlation between gut microbes and metabolites (P < 0.05). In summary, based on the advantages of comprehensive analysis of high-throughput sequencing sets, these results suggest that chronic exposure to Cr(VI) and Ni in combination can cause microbial flora imbalances, induce metabolic disorders, and subsequently cause colonic damage in mice. These data provide new insights into the toxicology and molecular mechanisms of Cr(VI) and Ni.


Assuntos
Cromo , Níquel , Animais , Camundongos , Níquel/toxicidade , Cromo/análise , Inflamação , RNA Mensageiro
2.
Biomed Pharmacother ; 171: 116205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38290252

RESUMO

Atrazine (ATR), a water-soluble herbicide commonly used to control broad-leaf and monocotyledonous weeds, presents a significant risk to environmental soil and water quality. Exposure to ATR adversely affects human and animal health, frequently resulting in cardiac impairment. Curcumin (Cur), an acidic polyphenol derivative from plants acclaimed for its pronounced anti-inflammatory and antioxidant properties, has garnered interest as a potential therapeutic agent. However, whether it has the potential to ameliorate ATR-induced cardiac toxicity via modulation of endoplasmic reticulum stress (ERS) and apoptosis pathways in mice remains unclear. Our results showed that Cur supplementation attenuates ATR-induced cardiotoxicity, evidenced by decrease in creatine kinase and lactate dehydrogenase, key biochemical markers of myocardial injury, which have a more significant protecting effect in high-dose ATR induced injury. Histopathological and electron microscopy examinations further solidified these findings, demonstrating an amelioration in organellar damage, particularly in endoplasmic reticulum swelling and subsequent mitochondrial impairment. Additionally, ATR exposure augments ERS and triggers apoptotic pathways, as indicated by the upregulation of ERS-related gene expression (ATF6, CHOP, IRE1, GRP78) and pro-apoptotic markers (BAX, BAK1, Caspase3, Caspase. Intriguingly, Cur counteracts this detrimental response, significantly reducing ERS and pro-apoptotic signals at both transcriptional and translational levels. Collectively, our findings illuminate Cur's cardioprotective effect against ATR-induced injury, primarily through its anti-ERS and anti-apoptotic activities, underscoring Cur's potential as a therapeutic for ATR-induced cardiotoxicity.


Assuntos
Atrazina , Curcumina , Humanos , Camundongos , Animais , Cardiotoxicidade/metabolismo , Curcumina/farmacologia , Apoptose , Estresse do Retículo Endoplasmático , Transdução de Sinais , Fator 6 Ativador da Transcrição/metabolismo
3.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139070

RESUMO

Hexavalent chromium (Cr(VI)) is a hazardous substance that poses significant risks to environmental ecosystems and animal organisms. However, the specific consequences of Cr(VI) exposure in terms of liver damage remain incompletely understood. This study aims to elucidate the mechanism by which Cr(VI) disrupts mitochondrial dynamics, leading to hepatic injury in ducks. Forty-eight healthy 8-day-old ducks were divided into four groups and subjected to diets containing varying doses of Cr(VI) (0, 9.28, 46.4, and 232 mg/kg) for 49 days. Our results demonstrated that Cr(VI) exposure resulted in disarranged liver lobular vacuolation, along with increasing the serum levels of ALT, AST, and AKP in a dose-dependent manner, which indicated liver damage. Furthermore, Cr(VI) exposure induced oxidative stress by reducing the activities of T-SOD, SOD, GSH-Px, GSH, and CAT, while increasing the contents of MDA and H2O2. Moreover, Cr(VI) exposure downregulated the activities of CS and MDH, resulting in energy disturbance, as evidenced by the reduced AMPK/p-AMPK ratio and PGC-1α protein expression. Additionally, Cr(VI) exposure disrupted mitochondrial dynamics through decreased expression of OPA1, Mfn1, and Mfn2 and increased expression of Drp-1, Fis1, and MFF proteins. This disruption ultimately triggered mitochondria-mediated apoptosis, as evidenced by elevated levels of caspase-3, Cyt C, and Bax, along with decreased expression of Bcl-2 and the Bcl-2/Bax ratio, at both the protein and mRNA levels. In summary, this study highlights that Cr(VI) exposure induces oxidative stress, inhibits the AMPK-PGC-1α pathway, disrupts mitochondrial dynamics, and triggers liver cell apoptosis in ducks.


Assuntos
Proteínas Quinases Ativadas por AMP , Patos , Animais , Proteína X Associada a bcl-2/metabolismo , Dinâmica Mitocondrial , Ecossistema , Peróxido de Hidrogênio , Fígado/metabolismo , Apoptose , Cromo/toxicidade , Proteínas Proto-Oncogênicas c-bcl-2/genética , Superóxido Dismutase
4.
Vet Microbiol ; 286: 109891, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866328

RESUMO

Nephropathogenic infectious bronchitis virus (NIBV) infections continue to pose a significant hazard in the poultry industry. Baicalin is a natural flavonoid that has been reported to have antiviral activity, but its function in NIBV infection largely remains unclear. In this study, the antiviral mechanism of baicalin in the spleen of NIBV-infected chicks was mainly elucidated in mitophagy and macrophage polarization. 28-day-old Hy-Line brown chicks were randomly divided into four groups: the group of chicks was treated intranasally (in) with normal saline (0.2 mL) and subsequently divided into two groups: the Con group (basic diet), the Con+BA group (basic diet+10 mg/kg Baicalin); another group of chicks was intranasally infected with SX9 (10-5/0.2 mL) and subsequently divided into two groups: the Dis group (basic diet), the Dis+BA group (basic diet+10 mg/kg Baicalin). Spleen tissues were collected at 3, 7, and 11 days post infection (dpi). NIBV copy number was strikingly decreased in the spleens under BA treatment with infectious time. Histopathological examination showed enlarged and hemorrhagic white pulp and no clearly defined boundary between white pulp and red pulp in the Dis group, which could be improved by BA treatment. Meanwhile, the loss of cristae structure and vacuolization in mitochondria caused by NIBV infection was repaired in the Dis+BA group by ultrastructure observation. In addition, BA treatment inhibited the induction of mitophagy by NIBV infection. BA treatment also promoted innate immunity by enhancing type I IFN levels. Moreover, BA treatment up-regulated M1-related cytokines (iNOS, TNF-α, IL-1ß, IL-6) and inhibited M2-related cytokines (ARG2, IL-4, IL-10, Pparg) at the mRNA and protein levels. However, the results from the splenic tissues at 11 dpi are opposite results from 3 and 7 dpi. Immunofluorescence analysis for M1 macrophage marker iNOS and M2 macrophage marker CD163 further validated this result. Collectively, BA inhibited mitophagy and triggered IFN activation, and M1 polarization, which contributed to the inhibition of NIBV infection.


Assuntos
Vírus da Bronquite Infecciosa , Animais , Baço , Mitofagia , Galinhas , Flavonoides/farmacologia , Citocinas/genética , Macrófagos , Antivirais
5.
J Am Heart Assoc ; 12(16): e029963, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37548171

RESUMO

Background Smoking is a well-established risk factor for the development of acute ischemic stroke (AIS). However, the "smoker's paradox" suggests that it is associated with favorable clinical outcomes following stroke. We aimed to reevaluate the association between smoking and in-hospital outcomes in patients with AIS in contemporary practice. Methods and Results A total of 649 610 inpatients with AIS from 1476 participating hospitals in the Chinese Stroke Center Alliance were included. In-hospital outcomes measurement included all-cause mortality, discharge against medical advice, and complications. Multivariable logistic regression models adjusting for baseline characteristics, clinical profiles at presentation, and in-hospital management were used to evaluate the association between smoking and in-hospital outcomes. A propensity score-matched analysis was also conducted. Of these patients with AIS, 36.8% (n=238 912) were smokers. Smokers were younger, had fewer comorbidities, and had slightly lower rates of adverse in-hospital outcomes than nonsmokers (all-cause death or discharge against medical advice: 6.0% versus 6.1%; in-hospital complications: 14.5% versus 15.1%). Multivariable analysis revealed that smoking was associated with higher risk of adverse in-hospital outcomes (all-cause death or discharge against medical advice: odds ratio [OR], 1.05 [95% CI, 1.02-1.08]; P<0.001; complications: OR, 1.06 [95% CI, 1.04-1.08]; P<0.001). The excess risk of adverse in-hospital outcomes remained in smoking patients with AIS after propensity score-matching analysis (all-cause death or discharge against medical advice: OR, 1.04 [95% CI, 1.00-1.08]; P=0.034; complications: OR, 1.05 [95% CI, 1.03-1.08]; P<0.001). Conclusions Smoking was associated with increased risk of adverse in-hospital outcomes among patients with AIS in contemporary practice, reinforcing the importance of smoking cessation in patients with AIS.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/diagnóstico , AVC Isquêmico/epidemiologia , AVC Isquêmico/terapia , População do Leste Asiático , Fumar/efeitos adversos , Fumar/epidemiologia , Fumar Tabaco , Resultado do Tratamento
6.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298392

RESUMO

Oxidative stress can adversely affect the health status of the body, more specifically by causing intestinal damage by disrupting the permeability of the intestinal barrier. This is closely related to intestinal epithelial cell apoptosis caused by the mass production of reactive oxygen species (ROS). Baicalin (Bai) is a major active ingredient in Chinese traditional herbal medicine that has antioxidant, anti-inflammatory, and anti-cancer properties. The purpose of this study was to explore the underlying mechanisms by which Bai protects against hydrogen peroxide (H2O2)-induced intestinal injury in vitro. Our results indicated that H2O2 treatment caused injury to IPEC-J2 cells, resulting in their apoptosis. However, Bai treatment attenuated H2O2-induced IPEC-J2 cell damage by up-regulating the mRNA and protein expression of ZO-1, Occludin, and Claudin1. Besides, Bai treatment prevented H2O2-induced ROS and MDA production and increased the activities of antioxidant enzymes (SOD, CAT, and GSH-PX). Moreover, Bai treatment also attenuated H2O2-induced apoptosis in IPEC-J2 cells by down-regulating the mRNA expression of Caspase-3 and Caspase-9 and up-regulating the mRNA expression of FAS and Bax, which are involved in the inhibition of mitochondrial pathways. The expression of Nrf2 increased after treatment with H2O2, and Bai can alleviate this phenomenon. Meanwhile, Bai down-regulated the ratio of phosphorylated AMPK to unphosphorylated AMPK, which is indicative of the mRNA abundance of antioxidant-related genes. In addition, knockdown of AMPK by short-hairpin RNA (shRNA) significantly reduced the protein levels of AMPK and Nrf2, increased the percentage of apoptotic cells, and abrogated Bai-mediated protection against oxidative stress. Collectively, our results indicated that Bai attenuated H2O2-induced cell injury and apoptosis in IPEC-J2 cells through improving the antioxidant capacity through the inhibition of the oxidative stress-mediated AMPK/Nrf2 signaling pathway.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Apoptose , Linhagem Celular , Peróxido de Hidrogênio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Suínos , Animais
7.
Ecotoxicol Environ Saf ; 257: 114942, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37086622

RESUMO

Aflatoxin B1 (AFB1) is a stable mycotoxin that contaminates animal feed on a large scale and causes severe damage to intestinal cells, induces inflammation and stimulates autophagy. Transient receptor potential mucolipin subfamily 1 (TRPML1) is a regulatory factor of autophagy, but the underlying mechanisms of TRPML1-mediated autophagy in AFB1 intestine toxicity remain elucidated. In the present study, AFB1 (0, 5, 10 µg/mL) was shown to reduce cell viability, increase reactive oxygen species (ROS) accumulation and apoptosis rate. Additionally, AFB1 caused structural damage to mitochondria and lysosomes and increased autophagosomes numbers. Furthermore, AFB1 promoted Ca2+ release by activating the TRPML1 channel, stimulated the expression of autophagy-related proteins, and induced autophagic flux blockade. Moreover, pharmacological inhibition of autophagosome formation by 3-methyladenine attenuated AFB1-induced apoptosis by downregulating the levels of TRPML1 and ROS, whereas blockade of autophagosome-lysosomal fusion by chloroquine alleviated AFB1-induced apoptosis by upregulating TRPML1 expression and exacerbating ROS accumulation. Intriguingly, blocking AFB1-induced autophagic flux generated ROS- and TRPML1-dependent cell death, as shown by the decreased apoptosis in the presence the free radical scavenger N-Acetyl-L-cysteine and the TRPML1 inhibitor ML-SI1. Overall, these results showed that AFB1 promoted apoptosis of IPEC-J2 cells by disrupting autophagic flux through activation of the ROS/TRPML1 pathway.


Assuntos
Aflatoxina B1 , Autofagia , Suínos , Animais , Aflatoxina B1/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Células Epiteliais/metabolismo , Lisossomos/metabolismo
8.
Environ Toxicol ; 38(4): 962-974, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36655595

RESUMO

Cadmium (Cd), a persistent and harmful heavy metal in the environment, can accumulate in the kidneys and cause nephrotoxicity. Selenium (Se) is a beneficial natural element that alleviates the toxicity of Cd. To ascertain the relationship between the protective mechanism of Se against Cd nephrotoxicity and ferroptosis and pyroptosis, we randomly divided 48 sheep into four groups and treated them with Cd chloride and/or sodium selenite for 50 days. The data confirmed that Cd apparently resulted in impaired kidney histology and function, depletion of GSH and nicotinamide adenine dinucleotide phosphate contents and CAT and SOD activities, elevation of MDA level, as well as the reduction in selenoprotein mRNA (GPX1, GPX4, TXNRD1, SELP) levels and GPX4 protein level and immunofluorescence intensity. Meanwhile, Cd induced ferroptosis by causing iron overload, up-regulating PTGS2, NCOA4, TFR1, and LC3B mRNA levels and PTGS2 and LC3B-II/LC3B-I protein levels, reducing SLC7A11 and FTH1 mRNA and protein levels, and enhancing the immunofluorescence co-localization of FTH1/LC3B. Moreover, it was also found that Cd triggered pyroptosis, which was evidenced by the increase of NLRP3 immunohistochemical positive signal, GSDMD-N immunofluorescence intensity, IL-1ß and IL-18 release and the levels of pyroptosis-related mRNA (NLRP3, ASC, Caspase-1, GSDMD, IL-1ß and IL-18) and proteins (NLRP3, Caspase-1p20, GSDMD-N, IL-1ß and IL-18). Notably, Se increased the expression level of GPX4 and the transcription factors TFAP2c and SP1, and ameliorated Cd-induced changes in aforementioned factors. In conclusion, GPX4 utilization by Se might be required to alleviate Cd-induced ferroptosis and pyroptosis in sheep kidney.


Assuntos
Ferroptose , Selênio , Animais , Ovinos , Cádmio/metabolismo , Selênio/farmacologia , Interleucina-18/metabolismo , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ciclo-Oxigenase 2/metabolismo , Rim/patologia , Caspase 1/metabolismo , RNA Mensageiro/metabolismo
9.
Poult Sci ; 102(1): 102274, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36402045

RESUMO

The aims of this study were to investigate the effects of supplemental N-acetyl-l-cysteine (NAC) on chronic heat stress-induced oxidative stress and inflammation in the ovaries of growing pullets. A total of 120, 12-wk-old, Hy-Line Brown hens were randomly separated into 4 groups with 6 replicates of 5 birds in each group for 21 d. The 4 treatments were as follows: the CON group and CN group were supplemented with basal diet or basal diet with 1 g/kg NAC, respectively; and the HS group and HSN group were heat-stressed groups supplemented with basal diet or basal diet with 1 g/kg NAC, respectively. The results indicated that the ovaries suffered pathological damage due to chronic heat stress and that NAC effectively ameliorated these changes. Compared with the HS group, antioxidant enzyme activities (including SOD, GSH-Px, CAT, and T-AOC) were enhanced, while the MDA contents and the expression levels of HSP70 were decreased in the HSN group. In addition, NAC upregulated the expression levels of HO-1, SOD2, and GST by upregulating the activity of Nrf2 at different time points to mitigate oxidative stress caused by heat exposure. Simultaneously, NAC attenuated chronic heat stress-induced NF-κB pathway activation and decreased the expression levels of the proinflammatory cytokines IL-8, IL-18, TNF-α, IKK-α, and IFN-γ. Cumulatively, our results indicated that NAC could ameliorate chronic heat stress-induced ovarian damage by upregulating the antioxidative capacity and reducing the secretion of proinflammatory cytokines.


Assuntos
Acetilcisteína , Galinhas , Animais , Feminino , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Galinhas/fisiologia , Ovário/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Inflamação/veterinária , Inflamação/metabolismo , Resposta ao Choque Térmico , Citocinas/metabolismo
10.
Environ Toxicol ; 38(3): 579-590, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36378575

RESUMO

The accumulation of copper (Cu) in the organisms could lead to kidney damage by causing mitochondrial dysfunction. Given that mitochondria are one of the targets of Cu poisoning, this study aimed to investigate the role of mitophagy in Cu-induced mitochondrial dysfunction in renal tubular epithelial cells to understand the mechanism of Cu nephrotoxicity. Hence, the cells were treated with different concentrations of Cu sulfate (CuSO4 ) (0, 100, and 200 µM), and mitophagy inhibitor (Cyclosporine A, 0.5 µM) and/or 200 µM CuSO4 in the combination for 12 h. Results showed that Cu caused mitochondrial swelling, vacuoles, and cristae fracture; increased the number of mitochondrial and lysosome fluorescent aggregation points; upregulated the mRNA levels of mitophagy-associated genes (LC3A, LC3B, P62, BNIP3, NIX, OPTN, NDP52, Cyp D LAMP1, and LAMP2) and protein levels of LC3II/LC3I, BNIP3, and NIX, downregulated the mRNA and protein levels of P62; reduced the mitochondrial membrane potential (MMP), ATP content, mitochondrial respiratory control rate (RCR), mitochondrial respiratory control rate (OPR), and the mRNA and protein levels of PGC-1α, TOMM20, and Mfn2, but increased the mRNA and protein levels of Drp1. Besides, cotreatment with Cu and CsA dramatically decreased the level of mitophagy, but increased mitochondrial division, further reduced MMP, ATP content, RCR, and OPR, mitochondrial fusion and thereby reduced mitochondrial biogenesis. Taken together, these data indicated that Cu exposure induced BNIP3/NIX-dependent mitophagy in duck renal tubular epithelial cells, and inhibition of mitophagy aggravated Cu-induced mitochondrial dysfunction.


Assuntos
Patos , Mitofagia , Animais , Mitofagia/genética , Patos/genética , Patos/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Mitocôndrias/metabolismo , Células Epiteliais/metabolismo , RNA Mensageiro/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
11.
Biol Trace Elem Res ; 201(2): 874-887, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35192142

RESUMO

Excess molybdenum (Mo) and cadmium (Cd) are harmful to animals, but the neurotoxic mechanism co-induced by Mo and Cd is unclear. To estimate the effects of Mo and Cd co-exposure on pyroptosis by nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant defense response in duck brains, 40 healthy 7-day-old ducks were randomly assigned to 4 groups and fed diet supplemented with Mo or/and Cd for 16 weeks, respectively. Results showed that Mo or/and Cd markedly increased Mo and Cd contents; decreased iron (Fe), copper (Cu), zinc (Zn), and selenium (Se) contents, elevated malondialdehyde (MDA) content; and decreased total-antioxidant capacity (T-AOC), total-superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities accompanied by pathological damage in brain. Additionally, Mo or/and Cd inhibited Nrf2 pathway via decreasing Nrf2, CAT, SOD1, glutathione S-transferase (GST), hemeoxygenase-1 (HO-1), NAD (P) H:quinone oxidoreductase 1 (NQO1), glutamate-cysteine ligase catalytic subunit (GCLC), and modifier subunit (GCLM) mRNA levels and Nrf2 protein level, which induced pyroptosis through upregulating nucleotide oligomerization domain-like receptor protein-3 (NLRP3), apoptosis-associated speck-like protein (ASC), gasdermin A (GSDMA), gasdermin E (GSDME), interleukin-1ß (IL-1ß), interleukin-18 (IL-18), Caspase-1, NIMA-related kinase 7 (NEK7) mRNA levels and NLRP3, Caspase-1 p20, gasdermin D (GSDMD), ASC protein levels and IL-1ß, and IL-18 contents. Besides, the changes of these indicators were most apparent in the Mo and Cd co-treated group. Collectively, the results certificated that Mo and Cd might synergistically induce pyroptosis via inhibiting Nrf2-mediated antioxidant defense response in duck brains, whose mechanism is closely related to Mo and Cd accumulation.


Assuntos
Antioxidantes , Molibdênio , Animais , Molibdênio/farmacologia , Antioxidantes/metabolismo , Cádmio/farmacologia , Patos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Interleucina-18 , Piroptose , Gasderminas , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Encéfalo/metabolismo , RNA Mensageiro/genética , Caspases/metabolismo , Caspases/farmacologia , Estresse Oxidativo
12.
J Inorg Biochem ; 236: 111974, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36027844

RESUMO

Excessive molybdenum (Mo) and cadmium (Cd) are toxic environmental pollutants. Our previous research confirmed excessive Mo and Cd co-induced calcium homeostasis disorder and autophagy in duck kidneys, but how calcium ion (Ca2+) regulates autophagy is unclear. The results revealed that the Mo- and/or Cd-induced cytosolic Ca2+ concentration ([Ca2+]c) increase mainly came from intracellular calcium stores. Mo and/or Cd caused mitochondrial Ca2+ content ([Ca2+]mit) and [Ca2+]c increase with endoplasmic reticulum (ER) Ca2+ content ([Ca2+]ER) decrease and upregulated calcium homeostasis-related factor expression levels, but 2-Aminoethoxydiphenyl borate (2-APB) reversed subcellular Ca2+ redistribution. Increased Phospholipase C (PLC) and inositol 1,4,5-trisphosphate (IP3) activities and inositol 1,4,5-trisphosphate receptor (IP3R) expression level were observed in Mo- and/or Cd-treated cells, which was reversed by the PLC inhibitor U-73122. 2-APB and 1,2-Bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM) addition mitigated [Ca2+]c and autophagy (variations in microtubule-associated protein light chain 3 (LC3), LC3B-II/LC3B-I, autophagy related 5 (ATG5), sequestosome-1(P62), programmed cell death-1 (Beclin-1) and Dynein expression levels, LC3 puncta, autophagosomes and acid vesicle organelles) under Mo and/or Cd treatment, respectively, while thapsigargin (TG) had the opposite impacts. Additionally, the calmodulin-dependent protein kinase kinase ß (CaMKKß) inhibitor STO-609 reversed the increased CaMKKß, adenosine 5'-monophosphate-activated protein kinase (AMPK), Beclin-1, and LC3B-II/LC3B-I protein expression levels and reduced mammalian target of rapamycin (mTOR) and P62 protein expression levels in Mo- and/or Cd-exposed cells. Collectively, the results confirmed that [Ca2+]c overload resulted from PLC/IP3/IP3R pathway-mediated ER Ca2+ release, and then activated autophagy by the CaMKKß/AMPK/mTOR pathway in Mo- and/or Cd-treated duck renal tubular epithelial cells.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Poluentes Ambientais , Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina , Animais , Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Patos/metabolismo , Dineínas/metabolismo , Células Epiteliais/metabolismo , Ésteres , Etano , Inositol 1,4,5-Trifosfato , Receptores de Inositol 1,4,5-Trifosfato , Mamíferos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Molibdênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tapsigargina , Fosfolipases Tipo C/metabolismo
13.
Front Immunol ; 13: 952639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935959

RESUMO

Hexavalent chromium [Cr(VI)] is a dangerous heavy metal which can impair the gastrointestinal system in various species; however, the processes behind Cr(VI)-induced intestinal barrier damage are unknown. Forty-eight healthy 1-day-old ducks were stochastically assigned to four groups and fed a basal ration containing various Cr(VI) dosages for 49 days. Results of the study suggested that Cr(VI) exposure could significantly increase the content of Cr(VI) in the jejunum, increase the level of diamine oxidase (DAO) in serum, affect the production performance, cause histological abnormalities (shortening of the intestinal villi, deepening of the crypt depth, reduction and fragmentation of microvilli) and significantly reduced the mRNA levels of intestinal barrier-related genes (ZO-1, occludin, claudin-1, and MUC2) and protein levels of ZO-1, occludin, cand laudin-1, resulting in intestinal barrier damage. Furthermore, Cr(VI) intake could increase the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-18 (IL-18) but decrease the activities of total superoxide dismutase (T-SOD), catalase (CAT), and glutathione reductase (GR), as well as up-regulate the mRNA levels of TLR4, MyD88, NF-κB, TNFα, IL-6, NLRP3, caspase-1, ASC, IL-1ß, and IL-18 and protein levels of TLR4, MyD88, NF-κB, NLRP3, caspase-1, ASC, IL-1ß, and IL-18 in the jejunum. In conclusion, Cr(VI) could cause intestinal oxidative damage and inflammation in duck jejunum by activating the NF-κB signaling pathway and the NLRP3 inflammasome.


Assuntos
Inflamassomos , NF-kappa B , Animais , Caspase 1/metabolismo , Cromo , Patos/genética , Peróxido de Hidrogênio/metabolismo , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ocludina/metabolismo , RNA Mensageiro , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
14.
Anticancer Drugs ; 33(9): 861-870, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946561

RESUMO

Cisplatin (DDP) is an antineoplastic agent for non-small cell lung cancer (NSCLC). Hsa_circ_0081664 (circLRWD1) is overexpressed in DDP-resistant NSCLC cells, but its function is unclear. Thus, this study is to investigate whether circLRWD1 participates in DDP resistance in NSCLC. Changes in circLRWD1 expression were determined by real-time quantitative PCR. Effects of circLRWD1 inhibition on DDP-resistant NSCLC cell viability, proliferation, migration, invasion, and apoptosis were analyzed. The sponge function of circLRWD1 was predicted by bioinformatics analysis and verified by dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. The function of circLRWD1 in DDP resistance was verified by xenograft models. CircLRWD1 was unconventionally overexpressed in DDP-resistant NSCLC samples and cells. Moreover, circLRWD1 silencing decreased IC 50 value, restrained cell proliferation, reduced cell migration and invasion, and facilitated cell apoptosis in DDP-resistant NSCLC cells. Also, circLRWD1 knockdown elevated DDP-resistant NSCLC cell sensitivity to DDP in xenograft models. Furthermore, circLRWD1 regulated SIRT5 expression via adsorbing miR-507. SIRT5 overexpression weakened circLRWD1 silencing-mediated suppression of cell resistance to DDP in DDP-resistant NSCLC cells. In conclusion, circLRWD1 elevated SIRT5 expression via adsorbing miR-507, resulting in promoting NSCLC cell resistance to DDP, providing evidence to explain the significant role of circLRWD1 in DDP resistance in NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Sirtuínas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Sirtuínas/genética , Sirtuínas/farmacologia , Sirtuínas/uso terapêutico
15.
Front Vet Sci ; 9: 936250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782541

RESUMO

This study aims to investigate the effect of heat stress on the physiological metabolism of young laying hens and whether N-acetyl-l-cysteine (NAC) can effectively alleviate heat stress. 120 Hy-Line Brown laying hens aged 12 weeks were randomly divided into four groups: the control group (fed on basal diet under thermal neutral condition), HS group (fed on basal diet under heat stress condition), CN group (fed on the basic meal supplemented with 1,000 mg NAC per kg under thermal neutral condition), and HS+N group (fed on the basic meal was supplemented with 1000 mg NAC per kg under heat stress condition). The HS and HS+N groups were exposed to 36 ± 1°C for 10 h/day. The effects of NAC on the changes of serum concentrations of T3, T4, and CORT and hypothalamic gene and protein expressions induced by heat stress were measured. Results showed that heat stress upregulated the contents of T3, T4, and CORT, while NAC reduced the contents of T3, T4, and CORT. In addition, NAC downregulated AgRP expression, while upregulated the expression of POMC. Moreover, the expressions of AMPKα1, LKB1, and CPT1 were inhibited by NAC, while the expressions of AKT1, ACC, GPAT, and PPARα were increased after NAC treatment, and HMGR did not change significantly. Western blot and comprehensive immunofluorescence section of AMPK in the hypothalamus showed that NAC attenuated the activity of AMPK. In conclusion, NAC can enhance the resistance of laying hens to heat stress by alleviating the metabolic disorders of serum T3, T4, and CORT induced by heat stress, inhibiting the activation of the AMPK pathway and regulating the expression of appetite-related genes in the hypothalamus.

16.
Int J Biol Macromol ; 213: 19-26, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35642850

RESUMO

Pulmonary hypertension syndrome (PHS) is a disease that is difficult to overcome for fast-growing broilers. It causes pulmonary vascular remodeling and ascites in broilers. As a classical inhibitor of cancer metastasis, phosphatidylethanolamine binding protein 1 (PEBP1) regulates angiogenesis in the process of tumor metastasis through multiple signal pathways. However, whether PEBP1 can regulate pulmonary artery remodeling in broilers with PHS has not been reported. This study constructed the prokaryotic expression vector of [PEBP1]-pET32a by genetic engineering technology, the recombinant PEBP1 protein was expressed in large quantities, and the PEBP1 polyclonal antibody was prepared by immunizing rabbits with the recombinant PEBP1 protein. Western blot and immunofluorescence results showed that PEBP1 was expressed in many kinds of animal tissues. However, due to the species specificity of polyclonal antibodies, the expression level of PEBP1 protein in broilers and ducks with high homology was significantly higher than that in other species of animals. More interestingly, we found that the expression of PEBP1 protein decreased significantly in broilers with PHS. These studies laid a foundation for further exploration of the mechanism of pulmonary artery remodeling. In addition, the PEBP1 polyclonal antibody provided convenience for further study of the role of PEBP1 in PHS.


Assuntos
Hipertensão Pulmonar , Animais , Anticorpos/metabolismo , Galinhas/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/veterinária , Proteína de Ligação a Fosfatidiletanolamina/genética , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Síndrome
17.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682929

RESUMO

Cadmium (Cd) is a toxic heavy metal that can accumulate in the liver of animals, damaging liver function. Inflammation and oxidative stress are considered primary causes of Cd-induced liver damage. Selenium (Se) is an antioxidant and can resist the detrimental impacts of Cd on the liver. To elucidate the antagonism of Se on Cd against hepatocyte injury and its mechanism, duck embryo hepatocytes were treated with Cd (4 µM) and/or Se (0.4 µM) for 24 h. Then, the hepatocyte viability, oxidative stress and inflammatory status were assessed. The findings manifested that the accumulation of reactive oxygen species (ROS) and the levels of pro-inflammatory factors were elevated in the Cd group. Simultaneously, immunofluorescence staining revealed that the interaction between NOD-like receptor pyran domain containing 3 (NLRP3) and apoptosis-associated speck-like protein (ASC) was enhanced, the movement of high-mobility group box 1 (HMGB1) from nucleus to cytoplasm was increased and the inflammatory response was further amplified. Nevertheless, the addition of Se relieved the above-mentioned effects, thereby alleviating cellular oxidative stress and inflammation. Collectively, the results suggested that Se could mitigate Cd-stimulated oxidative stress and inflammation in hepatocytes, which might be correlated with the NLRP3 inflammasome and HMGB1/nuclear factor-κB (NF-κB) signaling pathway.


Assuntos
Proteína HMGB1 , Selênio , Animais , Cádmio/metabolismo , Patos , Proteína HMGB1/metabolismo , Hepatócitos/metabolismo , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Selênio/metabolismo , Selênio/farmacologia
18.
Chem Biol Interact ; 362: 109981, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588787

RESUMO

Vanadium (V) is a common environmental and industrial pollutant that can cause nephrotoxicity in animals in excess. The purpose of this research was to explore the interaction between endoplasmic reticulum (ER) stress and autophagy induced by V in the kidney of ducks. Duck renal tubule epithelial cells were exposed to different concentrations of sodium metavanadate (NaVO3) (0, 100 and 200 µM) and PERK inhibitor (GSK, 1 µM), or autophagy inhibitor (chloroquine, 50 µM) alone for 24 h (chloroquine for the last 4 h). The results showed that exposure to V caused the dilatation and swelling of the ER and intracellular calcium overload, and upregulated PERK, eIF2α, ATF4 and CHOP mRNA levels and p-PERK and CHOP protein levels associated with ER stress in cells. Additionally, V markedly increased the number of autophagosomes, acidic vesicular organelles (AVOs) and LC3 puncta, as well as the mRNA levels of Beclin1, Atg5, Atg12, LC3A and LC3B and protein levels of Beclin1, Atg5 and LC3B-II/LC3B-I, but decreased the imRNA and protein levels of p62. Moreover, treatment with the PERK inhibitor ameliorated the changed factors above induced by V, but the V-induced variation of ER-stress related factors were aggravated after treatment with the autophagy inhibitor. Together, our data suggested that excessive V could induce ER stress and autophagy in duck renal tubular epithelial cells. ER stress might promote V-induced autophagy via the PERK/ATF4/CHOP signaling pathway, and autophagy may play a role in alleviating ER stress induced by V.


Assuntos
Patos , Estresse do Retículo Endoplasmático , Animais , Apoptose , Autofagia , Proteína Beclina-1 , Cloroquina/toxicidade , Patos/genética , Patos/metabolismo , Células Epiteliais/metabolismo , RNA Mensageiro , Vanádio , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
19.
Int J Biol Macromol ; 207: 905-916, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35364192

RESUMO

Tumor necrosis factor-α-induced protein eight like 1 (TIPE1) plays important role in autophagy, immunity, and lipid metabolism. The potential role of TIPE1 in fatty liver hemorrhage syndrome (FLHS) is elusory. In the present study, the full-length coding sequence of TIPE1 was cloned, and the polyclonal antibody of TIPE1 was produced by the recombinant TIPE1 protein. The bioinformatic analysis showed that the chicken TIPE1 protein, which was predicted to be a hydrophobic and non-transmembrane protein without signal peptide was highly different from that of mammals. Furthermore, proceeded by using TIPE1 polyclonal antibody, the tissue distribution analysis showed that TIPE1 protein is ubiquitously expressed in various tissues in adult hens and chicks, with its level being higher in the liver and, spleen, moderate in intestinal, brain, and heart. Besides, immunohistochemistry and immunofluorescence observation demonstrated that TIPE1 mainly existed in the cytoplasm in liver, duodenum, and cecum cell. Notably, the TIPE1 expressions were significantly decreased in laying hens suffering from FLHS. Collectively, these results showed that the chicken TIPE1 polyclonal antibody was successfully prepared and further used to analyze the expression profiles of chicken. And the expression of TIPE1 was reduced in FLHS which provided the foundation for further investigation in FLHS.


Assuntos
Fígado Gorduroso , Doenças das Aves Domésticas , Anormalidades Múltiplas , Animais , Anticorpos/metabolismo , Galinhas/genética , Clonagem Molecular , Anormalidades Craniofaciais , Fígado Gorduroso/metabolismo , Feminino , Transtornos do Crescimento , Comunicação Interventricular , Hemorragia/metabolismo , Fígado/metabolismo , Mamíferos , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Síndrome
20.
J Inorg Biochem ; 232: 111809, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35421768

RESUMO

Vanadium (V) is necessary for the health and growth of animals, but excessive V has harmful effects on the ecosystem health. Endoplasmic reticulum (ER)-mitochondria coupling as a membrane structure connects the mitochondrial outer membrane with the ER. The mitochondria-associated ER membrane (MAM) is a region of the ER-mitochondria coupling and is essential for normal cell function. Currently, the crosstalk between ER-mitochondrial coupling and apoptosis in the toxic mechanism of V on duck kidney is still unclear. In this study, duck renal tubular epithelial cells were incubated with different concentrations of sodium metavanadate (NaVO3) and/or inositol triphosphate receptor (IP3R) inhibitor 2-aminoethyl diphenyl borate (2-APB) for 24 h. The results showed that V could significantly increase lactate dehydrogenase (LDH) release, the mitochondrial calcium level and the numbers of the fluorescent signal points of IP3R; shortened the length ER-mitochondria coupling and reduced its formation; markedly upregulate the mRNA levels of MAM-related genes and protein levels, causing MAM dysfunction. Additionally, V treatment appeared to upregulate pro-apoptotic genes and downregulate anti-apoptotic genes, followed by cell apoptosis. The V-induced changes were alleviated by treatment with IP3R inhibitor. In summary, V could induce the dysfunction of ER-mitochondrial coupling and apoptosis, and inhibition of ER-mitochondrial coupling could attenuate V-induced apoptosis in duck renal tubular epithelial cells.


Assuntos
Patos , Vanádio , Animais , Apoptose , Cálcio/metabolismo , Patos/metabolismo , Ecossistema , Retículo Endoplasmático , Células Epiteliais/metabolismo , Mitocôndrias , Vanádio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA