Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(19): 10879-10896, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38686994

RESUMO

Mammary gland aging is one of the most important problems faced by humans and animals. How to delay mammary gland aging is particularly important. Puerarin is a kind of isoflavone substance extracted from Pueraria lobata, which has anti-inflammatory, antioxidant, and other pharmacological effects. However, the role of puerarin in delaying lipopolysaccharide (LPS)-induced mammary gland aging and its underlying mechanism remains unclear. On the one hand, we found that puerarin could significantly downregulate the expression of senescence-associated secretory phenotype (SASP) and age-related indicators (SA-ß-gal, p53, p21, p16) in mammary glands of mice. In addition, puerarin mainly inhibited the p38MAPK signaling pathway to repair mitochondrial damage and delay mammary gland aging. On the other hand, puerarin could also delay the cellular senescence of mice mammary epithelial cells (mMECs) by targeting gut microbiota and promoting the secretion of gut microbiota metabolites. In conclusion, puerarin could not only directly act on the mMECs but also regulate the gut microbiota, thus, playing a role in delaying the aging of the mammary gland. Based on the above findings, we have discovered a new pathway for puerarin to delay mammary gland aging.


Assuntos
Envelhecimento , Microbioma Gastrointestinal , Isoflavonas , Glândulas Mamárias Animais , Proteínas Quinases p38 Ativadas por Mitógeno , Isoflavonas/farmacologia , Animais , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Envelhecimento/efeitos dos fármacos , Humanos , Pueraria/química , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Senescência Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL
2.
Int J Comput Assist Radiol Surg ; 19(5): 939-950, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491244

RESUMO

PURPOSE: Pelvic X-ray (PXR) is widely utilized in clinical decision-making associated with the pelvis, the lower part of the trunk that supports and balances the trunk. In particular, PXR-based landmark detection facilitates downstream analysis and computer-assisted diagnosis and treatment of pelvic diseases. Although PXR has the advantages of low radiation and reduced cost compared to computed tomography (CT), it characterizes the 2D pelvis-tissue superposition of 3D structures, which may affect the accuracy of landmark detection in some cases. However, the superposition nature of PXR is implicitly handled by existing deep learning-based landmark detection methods, which mainly design the deep network structures for better detection performances. Explicit handling of the superposition nature of PXR is rarely done. METHODS: In this paper, we explicitly focus on the superposition of X-ray images. Specifically, we propose a pelvis extraction (PELE) module that consists of a decomposition network, a domain adaptation network, and an enhancement module, which utilizes 3D prior anatomical knowledge in CT to guide and well isolate the pelvis from PXR, thereby eliminating the influence of soft tissue for landmark detection. The extracted pelvis image, after enhancement, is then used for landmark detection. RESULTS: We conduct an extensive evaluation based on two public and one private dataset, totaling 850 PXRs. The experimental results show that the proposed PELE module significantly improves the accuracy of PXRs landmark detection and achieves state-of-the-art performances in several benchmark metrics. CONCLUSION: The design of PELE module can improve the accuracy of different pelvic landmark detection baselines, which we believe is obviously conducive to the positioning and inspection of clinical landmarks and critical structures, thus better serving downstream tasks. Our project has been open-sourced at https://github.com/ECNUACRush/PELEscores .


Assuntos
Pontos de Referência Anatômicos , Pelve , Tomografia Computadorizada por Raios X , Humanos , Pelve/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Imageamento Tridimensional/métodos , Aprendizado Profundo
3.
Gene ; 907: 148276, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38360128

RESUMO

Cold is a common stressor that threatens colonic health by affecting internal homeostasis. From the literature, Silent information regulator 2 (SIRT2) may have important roles during cold stress, but this conjecture requires investigation. To address this knowledge gap, we investigated the effects of SIRT2 on colonic injury in chronically cold-exposure mice. In a previous study, we showed that SIRT2 regulated p65 activation after cold exposure. In the current study, mice were exposed to 4 °C for 3 h/day for 3 weeks to simulate a chronic cold exposure environment. Chronic cold exposure shortened colon length, disrupted tight junctions in colonic epithelial tissue, and disordered colonic flora. Chronic cold exposure also increased p65 acetylation levels, promoted nuclear factor (NF)-κB activation, and increased the expression of its downstream pro-inflammatory factors, while SIRT2 knockdown aggravated the consequences of tissue structure disruption and increased inflammatory factors brought about by chronic cold exposure to some extent, but could alleviate the downregulation of colonic tight junction-related proteins to some extent. We also observed direct SIRT2 regulatory effects toward p65, and in Caco-2 cells treated with lipopolysaccharide (LPS), SIRT2 knockdown increased p65 acetylation levels and pro-inflammatory factor expression, while SIRT2 overexpression reversed these phenomena. Therefore, SIRT2 deletion exacerbated chronic cold exposure-induced colonic injury and p65 activation in mice. Mechanistically, p65 modification by SIRT2 via deacetylation may affect NF-κB signaling. These findings suggest that SIRT2 is a key target of colonic health maintenance under chronic cold exposure conditions.


Assuntos
Colo , NF-kappa B , Sirtuína 2 , Animais , Humanos , Camundongos , Células CACO-2 , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Transdução de Sinais , Sirtuína 2/genética , Fator de Transcrição RelA/metabolismo , Colo/lesões , Colo/patologia , Temperatura Baixa/efeitos adversos
4.
Psychiatry Res Neuroimaging ; 334: 111674, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37413860

RESUMO

INTRODUCTION: Lumbar disk herniation (LDH) is the preeminent disease of lever positioning manipulation (LPM), a complex disorder involving alterations in brain function. Resting-state functional magnetic resonance imaging (rs-fMRI) has the advantages of non-trauma, zero radiation, and high spatial resolution, which has become an effective means to study brain science in contemporary physical therapy. Furthermore, it can better elucidate the response characteristics of the brain region of LPM intervention in LDH. We utilized two data analysis methods, the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) of rs-fMRI, to assess the effects of LPM on real-time brain activity in patients with LDH. METHODS: Patients with LDH (Group 1, n = 21) and age-, gender- and education-matched healthy controls without LDH (Group 2, n = 21) were prospectively enrolled. Brain fMRI was performed for Group 1 at two-time points (TPs): before LPM (TP1) and after one LPM session (TP2). The healthy controls (Group 2) did not receive LPM and underwent only one fMRI scan. Participants in Group 1 completed clinical questionnaires assessing pain and functional disorders using a Visual Analog Scale and the Japanese Orthopaedic Association (JOA), respectively. Furthermore, we employed MNL90 (Montreal Neurological Institute) as a brain-specific template. RESULTS: Compared to the healthy controls (Group 2), the patients with LDH (Group 1) had significant variation in ALFF and ReHo values in brain activity. After the LPM session (TP2), Group 1 at TP1 also showed significant variation in ALFF and ReHo values in brain activity. In addition, the latter (TP2 vs TP1) showed more significant changes in brain regions than the former (Group 1 vs Group 2). The ALFF values were increased in the Frontal_Mid_R and decreased in the Precentral_L in Group 1 at TP2 compared with TP1. The Reho values were increased in the Frontal_Mid_R and decreased in the Precentral_L in Group 1 at TP2 compared with TP1. The ALFF values were increased in the Precuneus_R and decreased in the Frontal_Mid_Orb_L in Group 1 compared with Group 2. Only three brain areas with significant activity in Group 1 compared with Group 2: Frontal_Mid_Orb_L, Frontal_Sup_Orb_L, and Frontal_Mid_R. ALFF value in the Frontal_Mid_R at TP2 correlated positively with the change rates of JOA scores between TP1 and TP2 (P = 0.04, r = 0.319, R2 = 0.102). DISCUSSION: Patients with LDH showed abnormal brain ALFF and ReHo values, which were altered after LPM. The default mode network, prefrontal cortex, and primary somatosensory cortex regions could predict real-time brain activity for sensory and emotional pain management in patients with LDH after LPM.


Assuntos
Mapeamento Encefálico , Deslocamento do Disco Intervertebral , Humanos , Mapeamento Encefálico/métodos , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Deslocamento do Disco Intervertebral/terapia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal
5.
J Cell Physiol ; 237(10): 3960-3970, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35938526

RESUMO

Cold is a factor affecting health in humans and animals. The liver, a major metabolic center, is highly susceptible to ambient air temperature. Recent studies have shown that endoplasmic reticulum (ER) stress is associated with the liver, and regulates the occurrence and development of liver injury and autophagy. However, the mechanism underlying the relationship between cold exposure and ER stress in the liver is not well understood. In this study, we investigated the effect of ER stress on liver autophagy and its mechanism under cold exposure. AML12 cells were treated with Tg to construct an ER stress model, and the level of autophagy increased. To further explore the mechanism through which ER stress regulates autophagy, we knocked down SIRT2 with shRNA in Tg-treated AML12 cells. Knockdown of SIRT2 significantly increased ER stress and autophagy, increased FoxO1 acetylation, and promoted its entry into the nucleus. To further verify the results of in vitro experiments, we exposed mice to 4°C for 3 h per day for 3 weeks to exacerbate the burden on the liver after cold exposure. Cold exposure damaged the structure and function of the liver and promoted the inflammatory response. It also activated ER stress and promoted autophagy. In addition, cold exposure inhibited the expression of SIRT2, promoted FoxO1 acetylation, and enhanced the interaction with autophagy. Our findings indicated that cold exposure induces liver damage, ER stress, and autophagy through the SIRT2/FoxO1 pathway. These findings suggest that SIRT2 may be a potential target for regulating health under cold exposure.


Assuntos
Estresse do Retículo Endoplasmático , Proteína Forkhead Box O1 , Sirtuína 2 , Animais , Camundongos , Autofagia , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , RNA Interferente Pequeno/farmacologia , Transdução de Sinais , Sirtuína 2/genética , Sirtuína 2/metabolismo , Temperatura Baixa
6.
Biosensors (Basel) ; 11(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34436088

RESUMO

Traditional in vitro anticancer drug sensitivity testing at the population level suffers from lengthy procedures and high false positive rates. To overcome these defects, we built a confocal Raman microscopy sensing system and proposed a single-cell approach via Raman-deuterium isotope probing (Raman-DIP) as a rapid and reliable in vitro drug efficacy evaluation method. Raman-DIP detected the incorporation of deuterium into the cell, which correlated with the metabolic activity of the cell. The human non-small cell lung cancer cell line HCC827 and human breast cancer cell line MCF-7 were tested against eight different anticancer drugs. The metabolic activity of cancer cells could be detected as early as 12 h, independent of cell growth. Incubation of cells in 30% heavy water (D2O) did not show any negative effect on cell viability. Compared with traditional methods, Raman-DIP could accurately determine the drug effect, meanwhile, it could reduce the testing period from 72-144 h to 48 h. Moreover, the heterogeneity of cells responding to anticancer drugs was observed at the single-cell level. This proof-of-concept study demonstrated the potential of Raman-DIP to be a reliable tool for cancer drug discovery and drug susceptibility testing.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Análise Espectral Raman , Carcinoma Pulmonar de Células não Pequenas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Neoplasias Pulmonares , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis
7.
Transl Neurodegener ; 10(1): 12, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789744

RESUMO

BACKGROUND: Currently, there is no cure for Alzheimer's disease (AD). Therapeutics that can modify the early stage of AD are urgently needed. Recent studies have shown that the pathogenesis of AD is closely regulated by an endo/lysosomal asparaginyl endopeptidase (AEP). Inhibition of AEP has been reported to prevent neural degeneration in transgenic mouse models of AD. However, more than 90% of AD cases are age-related sporadic AD rather than hereditary AD. The therapeutic efficacy of AEP inhibition in ageing-associated sporadic AD remains unknown. METHODS: The senescence-accelerated mouse prone 8 (SAMP8) was chosen as an approximate model of sporadic AD and treated with a selective AEP inhibitor,: δ-secretase inhibitor 11. Activation of AEP was determined by enzymatic activity assay. Concentration of soluble amyloid ß (Aß) in the brain was determined by ELISA. Morris water maze test was performed to assess the learning and memory-related cognitive ability. Pathological changes in the brain were explored by morphological and western blot analyses. RESULTS: The enzymatic activity of AEP in the SAMP8 mouse brain was significantly higher than that in the age-matched SAMR1 mice. The half maximal inhibitory concentration (IC50) for δ-secretase inhibitor 11 to inhibit AEP in vitro is was around 150 nM. Chronic treatment with δ-secretase inhibitor 11 markedly decreased the brain AEP activity, reduced the generation of Aß1-40/42 and ameliorated memory loss. The inhibition of AEP with this reagent not only reduced the AEP-cleaved tau fragments and tau hyperphosphorylation, but also attenuated neuroinflammation in the form of microglial activation. Moreover, treatment with δ-secretase inhibitor 11 prevented the synaptic loss and alleviated dendritic disruption in SAMP8 mouse brain. CONCLUSIONS: Pharmacological inhibition of AEP can intervene and prevent AD-like pathological progress in the model of sporadic AD. The up-regulated AEP in the brain could be a promising target for early treatment of AD. The δ-secretase inhibitor 11 can be used as a lead compound for translational development of AD treatment.


Assuntos
Senilidade Prematura/tratamento farmacológico , Senilidade Prematura/patologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Cisteína Endopeptidases/metabolismo , Inibidores de Proteases/uso terapêutico , Envelhecimento , Peptídeos beta-Amiloides/análise , Animais , Encéfalo/patologia , Química Encefálica , Cognição , Cisteína Endopeptidases/efeitos dos fármacos , Humanos , Masculino , Aprendizagem em Labirinto , Memória , Camundongos
8.
Br J Pharmacol ; 176(15): 2691-2707, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31034096

RESUMO

BACKGROUND AND PURPOSE: The Na+ /Ca2+ exchanger (NCX) working in either forward or reverse mode participates in maintaining intracellular Ca2+ ([Ca2+ ]i ) homeostasis, which is essential for determining cell fate. Previously, numerous blockers targeting reverse or forward NCX have been developed and studied in ischaemic tissue injury but barely examined in glioblastoma for the purpose of anti-tumour therapy. We assessed the effect of NCX blockers on glioblastoma growth and whether NCX can become a therapeutic target. EXPERIMENTAL APPROACH: Patch-clamp recording, Ca2+ imaging, flow cytometry, and Western blot were used to study the effects of specific and non-specific NCX blockers on cultured glioblastoma cells. In vivo bioluminescent imaging was used to measure effects on grafted glioblastoma. KEY RESULTS: Selectively blocking the reverse NCX with SEA0400, SN-6, and YM-244769 did not affect tumour cell viability. Blocking the forward NCX with bepridil, CB-DMB, or KB-R7943 elevated [Ca2+ ]i and killed glioblastoma cells. Bepridil and CB-DMB caused Ca2+ -dependent cell cycle arrest together with apoptosis, which were all attenuated by a Ca2+ chelator BAPTA-AM. Systemic administration of bepridil inhibited growth of brain-grafted glioblastoma. Bepridil did not appear to have a cytotoxic effect on human astrocytes, which have higher functional expression of NCX than glioblastoma cells. CONCLUSIONS AND IMPLICATIONS: Low expression of the NCX makes glioblastoma cells sensitive to disturbance of [Ca2+ ]i . Interventions designed to block the forward NCX can cause Ca2+ -mediated injury to glioblastoma thus having therapeutic potential. Bepridil could be a lead compound for developing new anti-tumour drugs.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bepridil/farmacologia , Bepridil/uso terapêutico , Cálcio/metabolismo , Glioblastoma/tratamento farmacológico , Trocador de Sódio e Cálcio/antagonistas & inibidores , Amilorida/análogos & derivados , Amilorida/farmacologia , Compostos de Anilina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Compostos de Benzil/farmacologia , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Éteres Fenílicos/farmacologia , Trocador de Sódio e Cálcio/fisiologia , Tiazolidinas/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia
9.
J Stroke Cerebrovasc Dis ; 26(12): 2706-2719, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29054733

RESUMO

BACKGROUND: Stroke is a leading cause of long-term disability. All neuroprotectants targeting excitotoxicity have failed to become stroke medications. In order to explore and identify new therapeutic targets for stroke, we here reviewed present studies of ionic transporters and channels that are involved in ischemic brain damage. METHOD: We surveyed recent literature from animal experiments and clinical reports in the databases of PubMed and Elsevier ScienceDirect to analyze ionic mechanisms underlying ischemic cell damage and suggest promising ideas for stroke therapy. RESULTS: Dysfunction of ionic transporters and disrupted ionic homeostasis are most early changes that underlie ischemic brain injury, thus receiving sustained attention in translational stroke research. The Na+/K+-ATPase, Na+/Ca2+ Exchanger, ionotropic glutamate receptor, acid-sensing ion channels (ASICs), sulfonylurea receptor isoform 1 (SUR1)-regulated NCCa-ATP channels, and transient receptor potential (TRP) channels are critically involved in ischemia-induced cellular degenerating processes such as cytotoxic edema, excitotoxicity, necrosis, apoptosis, and autophagic cell death. Some ionic transporters/channels also act as signalosomes to regulate cell death signaling. For acute stroke treatment, glutamate-mediated excitotoxicity must be interfered within 2 hours after stroke. The SUR1-regulated NCCa-ATP channels, Na+/K+-ATPase, ASICs, and TRP channels have a much longer therapeutic window, providing new therapeutic targets for developing feasible pharmacological treatments toward acute ischemic stroke. CONCLUSION: The next generation of stroke therapy can apply a polypharmacology strategy for which drugs are designed to target multiple ion transporters/channels or their interaction with neurotoxic signaling pathways. But a successful translation of neuroprotectants relies on in-depth analyses of cell death mechanisms and suitable animal models resembling human stroke.


Assuntos
Encéfalo/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Moduladores de Transporte de Membrana/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Canais Iônicos Sensíveis a Ácido/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Humanos , Moduladores de Transporte de Membrana/efeitos adversos , Necrose , Fármacos Neuroprotetores/efeitos adversos , Receptores Ionotrópicos de Glutamato/antagonistas & inibidores , Receptores Ionotrópicos de Glutamato/metabolismo , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Receptores de Sulfonilureias/antagonistas & inibidores , Receptores de Sulfonilureias/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA