Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 95: 103566, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935604

RESUMO

A docking study of a novel series of benzofuran derivatives with ERα was conducted. In this study, we report the synthesis of a novel series of benzofuran derivatives and evaluation of their anticancer activity in vitro against MCF-7 human breast cancer cells, as well as their potential toxicity to ER-independent MDA-MB-231 breast cancer cells, human renal epithelial HEK-293 cells, and human immortal keratinocytes (HaCaT cells) by using the MTT colorimetric assay. The screening results indicated that the target compounds exhibited anti-breast cancer activity. The target compound 2-benzoyl-3-methyl-6-[2-(morpholin-4-yl)ethoxy]benzofuran hydrochloride (4e) exhibited excellent activity against anti-oestrogen receptor-dependent breast cancer cells and low toxicity. The preliminary structure-activity relationships of the target benzofuran derivatives have been summarised. In conclusion, the novel benzofuran scaffold may be a promising lead for the development of potential oestrogen receptor inhibitors.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Benzofuranos/química , Benzofuranos/farmacologia , Neoplasias da Mama/patologia , Desenho de Fármacos , Receptores de Estrogênio/metabolismo , Antineoplásicos/síntese química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Simulação de Acoplamento Molecular , Análise Espectral/métodos , Relação Estrutura-Atividade
2.
Phytomedicine ; 21(11): 1310-7, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25172795

RESUMO

PURPOSE: C-X-C chemokine receptor type 4 (CXCR4) signaling has been demonstrated to be involved in cancer invasion and migration; therefore, CXCR4 antagonist can serve as an anti-cancer drug by preventing tumor metastasis. This study aimed to identify the CXCR4 antagonists that could reduce and/or inhibit tumor metastasis from natural products. METHODS AND RESULTS: According to the molecular docking screening, we reported here silibinin as a novel CXCR4 antagonist. Biochemical characterization showed that silibinin blocked chemokine ligand 12 (CXCL12)-induced CXCR4 internalization by competitive binding to CXCR4, therefore inhibiting downstream intracellular signaling. In human breast cancer cells MDA-MB-231, which expresses high levels of CXCR4, inhibition of CXCL12-induced chemomigration can be found under silibinin treatment. Overexpression of CXCL12 sensitized MDA-MB-231 cells to the inhibition of silibinin, which was abolished by CXCR4 knockdown. The inhibition of silibinin was also observed in MCF-7/CXCR4 cells rather than MCF-7 cells that express low level of CXCR4. CONCLUSIONS: Our work demonstrated that silibinin is a novel CXCR4 antagonist that may have potential therapeutic use for prevention of tumor metastasis.


Assuntos
Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Receptores CXCR4/antagonistas & inibidores , Silimarina/farmacologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos , Silibina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA