Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Neoplasia ; 54: 101007, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38796932

RESUMO

B7-H4 is a promising immune checkpoint molecule in tumor immunotherapy. Our previous study showed that high B7-H4 expression was strongly correlated with deficiency in tumor infiltrated lymphocytes (TILs) in glioma patients. On this basis, we investigated the impact of B7-H4 on CD8+TILs in gliomas and the associated molecular mechanism here. B7-H4-positive tumor samples (n=129) from our glioma cohort were used to assess B7-H4 expression and CD8+TIL quantification by immunohistochemistry. CD8+TILs from five glioma patients cultured with B7-H4 protein were used to evaluate anti-tumor dysfunction by flow cytometry and ELISpot. An orthotopic murine glioma model was used to investigate the role of B7-H4 in glioma CD8+TILs by immunohisto- chemistry and flow cytometry. CD8+TILs from glioma patients cultured with B7-H4 protein were used to explore the potential molecular mechanism by RNA sequencing and western blot. Our results showed that glioma CD8+TIL density was negatively correlated with B7-H4 expression both in glioma patient cohort (P < 0.05) and orthotopic glioma murine model (P < 0.01). B7-H4 also lowered the expression of CD137 and CD103 (P < 0.05 for both) in glioma CD8+TILs and reduced their secretion of the anti-tumor cytokines IFN-γ and TNF-α (P < 0.01 for both) in a dose-dependent manner. Furthermore, B7-H4 was found to induce early dysfunction of glioma CD8+TILs by downregulating the phosphorylation of AKT and eNOS (P < 0.05 for both). In conclusion, B7-H4 reduced the infiltration of glioma CD8+TILs and induced an anti-tumor dysfunction phenotype. B7-H4 may also impair the anti-tumor function of glioma CD8+TILs via the AKT-eNOS pathway. These results indicated that B7-H4 may serve as a potential target in future glioma immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Glioma , Linfócitos do Interstício Tumoral , Inibidor 1 da Ativação de Células T com Domínio V-Set , Glioma/patologia , Glioma/imunologia , Glioma/metabolismo , Glioma/genética , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Inibidor 1 da Ativação de Células T com Domínio V-Set/genética , Camundongos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Transdução de Sinais , Pessoa de Meia-Idade
2.
Immunol Lett ; 267: 106853, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513836

RESUMO

BACKGROUND: Allergic asthma is a heterogeneous disease and new strategies are needed to prevent or treat this disease. Studies have shown that probiotic interventions are effective in preventing asthma. Here, we investigated the impact of Saccharomyces boulardii (S. boulardii) on ovalbumin (OVA)-induced allergic asthma in mice, as well as the underlying mechanisms. METHODS: First, we constructed a mouse asthma model using OVA and given S. boulardii intervention. Next, we measured N6-methyladenosine (m6A) levels in lung injury tissues. 16 s rRNA was employed to identify different gut microbiota in fecal samples. The analysis of differential metabolites in feces was performed by non-targeted metabolomics. Pearson correlation coefficient was utilized to analyze correlation between gut microbiota, metabolites and methyltransferase-like 3 (METTL3). Finally, we collected mouse feces treated by OVA and S. boulardii intervention for fecal microbiota transplantation (FMT) and interfered with METTL3. RESULTS: S. boulardii improved inflammation and oxidative stress and alleviated lung damage in asthmatic mice. In addition, S. boulardii regulated m6A modification levels in asthmatic mice. 16 s rRNA sequencing showed that S. boulardii remodeled gut microbiota homeostasis in asthmatic mice. Non-targeted metabolomics analysis showed S. boulardii restored metabolic homeostasis in asthmatic mice. There was a correlation between gut microbiota, differential metabolites, and METTL3 analyzed by Pearson correlation. Additionally, through FMT and interference of METTL3, we found that gut microbiota mediated the up-regulation of METTL3 by S. boulardii improved inflammation and oxidative stress in asthmatic mice, and alleviated lung injury. CONCLUSIONS: S. boulardii alleviated allergic asthma by restoring gut microbiota and metabolic homeostasis via up-regulation of METTL3 in an m6A-dependent manner.


Assuntos
Adenosina , Asma , Modelos Animais de Doenças , Microbioma Gastrointestinal , Homeostase , Metiltransferases , Probióticos , Saccharomyces boulardii , Regulação para Cima , Animais , Asma/terapia , Asma/metabolismo , Asma/imunologia , Asma/etiologia , Asma/microbiologia , Metiltransferases/metabolismo , Metiltransferases/genética , Microbioma Gastrointestinal/imunologia , Camundongos , Adenosina/metabolismo , Adenosina/análogos & derivados , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Feminino , Transplante de Microbiota Fecal , Ovalbumina/imunologia , Camundongos Endogâmicos BALB C
3.
Mol Biol Rep ; 50(11): 9229-9237, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37805662

RESUMO

BACKGROUND: Precise quantification of grafted human cells in preclinical animal models such as non-human primates, rodents and rabbits is needed for the evaluations of the safety and efficacy of cell therapy. Quantitative PCR (qPCR) as a swift, sensitive and powerful assay is suitable for human cell quantification. However, it is a formidable challenge due to that the genome of non-human primates share more than 95% of similarity as human. METHODS: In the present study, we developed a probe-based quantitative PCR (qPCR) assay for the quantification of human cells in preclinical animal models via targeting human specific DNA in the intron of BRCA1 (termed BRCA1-qPCR). The 5' and 3' end of BRCA1-qPCR probe was conjugated with FAM and non-fluorescent quencher-minor groove binder (NFQ-MGB), respectively. 1 µg of genomic DNA from human and preclinical animal models including rhesus monkeys, cynomolgus monkeys, New Zealand white rabbits, SD rats, C57BL/6 and BALB/c mice were used for determining the specificity and sensitivity of the BRCA1-qPCR assay. A calibration curve was generated by BRCA1-qPCR analysis of linearized plasmid containing targeted human specific DNA in BRCA1. The BRCA1-qPCR assay was validated by analysis of 0.003%, 0.03% and 0.3% of human leukocytes mixed within murine leukocytes. RESULTS: The BRCA1-qPCR assay detected human DNA rather than DNA from tested species. The amplification efficiency of the BRCA1-qPCR assay was 95.4% and the linearity of the calibration curve was R2 = 0.9997. The BRCA1-qPCR assay detected as low as 5 copies of human specific DNA and is efficient to specially amplify 30 pg human DNA in the presence of 1 µg of genomic DNA from tested species, respectively. The BRCA1-qPCR assay was able to quantify as low as 0.003% of human cells within murine leukocytes. CONCLUSION: The BRCA1-qPCR assay is efficient for the quantification of human cells in preclinical animal models.


Assuntos
DNA , Primatas , Humanos , Animais , Ratos , Camundongos , Coelhos , Íntrons , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase , Modelos Animais , Proteína BRCA1/genética
4.
J Neurooncol ; 164(1): 127-139, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37462801

RESUMO

BACKGROUND: Glioma is the most malignant primary brain tumor with a poor survival time. The tumour microenvironment, especially glioma-associated microglia/macrophages (GAMs), plays an important role in the pathogenesis of glioma. Currently, microglia (CD11b+/CD45Low) and macrophages (CD11b+/CD45High) are distinguished as distinct cell types due to their different origins. Moreover, signal-transducing adaptor protein 1 (STAP1) plays a role in tumourigenesis and immune responses. However, to date, no studies have been reported on STAP1 in GAMs. METHODS: The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases were used to investigate the association between STAP1 mRNA levels and clinical parameters (grades, mutations in isocitrate dehydrogenase, and overall survival). RNA-sequencing, qRT-PCR, Western blotting, immunohistochemistry and immunofluorescence analyses were performed to detect the expression level of STAP1 and related proteins. BV-2 cells were used to construct a STAP1-overexpressing cell line. Phagocytosis of BV-2 cells was assessed by flow cytometry and fluorescence microscopy. C57BL/6 mice were used to establish orthotopic and subcutaneous glioma mouse models. Glioma growth was monitored by bioluminescence imaging. RESULTS: STAP1 expression in glioma-associated microglia is positively correlated with the degree of malignancy and poor prognosis of glioma. Moreover, STAP1 may promote M2-like polarisation by increasing ARG1 expression and inhibiting microglial phagocytosis of microglia. Increased ARG1 may be associated with the IL-6/STAT3 pathway. Impaired phagocytosis may be associated with decreased cofilin and filopodia. CONCLUSION: STAP1 is positively associated with the degree of glioma malignancy and may represent a potential novel therapeutic target for glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Camundongos , Animais , Microglia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Glioma/metabolismo , Macrófagos , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral
5.
Clin Cancer Res ; 29(18): 3779-3792, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37439870

RESUMO

PURPOSE: The dynamic interplay between glioblastoma stem cells (GSC) and tumor-associated macrophages (TAM) sculpts the tumor immune microenvironment (TIME) and promotes malignant progression of glioblastoma (GBM). However, the mechanisms underlying this interaction are still incompletely understood. Here, we investigate the role of CXCL8 in the maintenance of the mesenchymal state of GSC populations and reprogramming the TIME to an immunosuppressive state. EXPERIMENTAL DESIGN: We performed an integrative multi-omics analyses of RNA sequencing, GBM mRNA expression datasets, immune signatures, and epigenetic profiling to define the specific genes expressed in the mesenchymal GSC subsets. We then used patient-derived GSCs and a xenograft murine model to investigate the mechanisms of tumor-intrinsic and extrinsic factor to maintain the mesenchymal state of GSCs and induce TAM polarization. RESULTS: We identified that CXCL8 was preferentially expressed and secreted by mesenchymal GSCs and activated PI3K/AKT and NF-κB signaling to maintain GSC proliferation, survival, and self-renewal through a cell-intrinsic mechanism. CXCL8 induced signaling through a CXCR2-JAK2/STAT3 axis in TAMs, which supported an M2-like TAM phenotype through a paracrine, cell-extrinsic pathway. Genetic- and small molecule-based inhibition of these dual complementary signaling cascades in GSCs and TAMs suppressed GBM tumor growth and prolonged survival of orthotopic xenograft-bearing mice. CONCLUSIONS: CXCL8 plays critical roles in maintaining the mesenchymal state of GSCs and M2-like TAM polarization in GBM, highlighting an interplay between cell-autonomous and cell-extrinsic mechanisms. Targeting CXCL8 and its downstream effectors may effectively improve GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Macrófagos Associados a Tumor/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células , Microambiente Tumoral/genética
6.
Biol Direct ; 18(1): 6, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849959

RESUMO

BACKGROUND: Acute myocardial infarction is a major health problem and is the leading cause of death worldwide. Myocardial apoptosis induced by myocardial infarction injury is involved in the pathophysiology of heart failure. Therapeutic stem cell therapy has the potential to be an effective and favorable treatment for ischemic heart disease. Exosomes derived from stem cells have been shown to effectively repair MI injury-induced cardiomyocyte damage. However, the cardioprotective benefits of adipose tissue-derived mesenchymal stem cell (ADSC)-Exos remain unknown. This study aimed to investigate the protective effects of exosomes from ADSC on the hearts of MI-treated mice and to explore the underlying mechanisms. METHODS: Cellular and molecular mechanisms were investigated using cultured ADSCs. On C57BL/6J mice, we performed myocardial MI or sham operations and assessed cardiac function, fibrosis, and angiogenesis 4 weeks later. Mice were intramyocardially injected with ADSC-Exos or vehicle-treated ADSCs after 25 min following the MI operation. RESULTS: Echocardiographic experiments showed that ADSC-Exos could significantly improve left ventricular ejection fraction, whereas ADSC-Exos administration could significantly alleviate MI-induced cardiac fibrosis. Additionally, ADSC-Exos treatment has been shown to reduce cardiomyocyte apoptosis while increasing angiogenesis. Molecular experiments found that exosomes extracted from ADSCs can promote the proliferation and migration of microvascular endothelial cells, facilitate angiogenesis, and inhibit cardiomyocytes apoptosis through miRNA-205. We then transferred isolated exosomes from ADSCs into MI-induced mice and observed decreased cardiac fibrosis, increased angiogenesis, and improved cardiac function. We also observed increased apoptosis and decreased expression of hypoxia-inducible factor-1α and vascular endothelial growth factor in HMEC-1 transfected with a miRNA-205 inhibitor. CONCLUSION: In summary, these findings show that ADSC-Exos can alleviate cardiac injury and promote cardiac function recovery in MI-treated mice via the miRNA-205 signaling pathway. ADSC-Exos containing miRNA205 have a promising therapeutic potential in MI-induced cardiac injury.


Assuntos
Exossomos , MicroRNAs , Infarto do Miocárdio , Animais , Camundongos , Células Endoteliais , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Infarto do Miocárdio/terapia , Volume Sistólico , Fator A de Crescimento do Endotélio Vascular , Função Ventricular Esquerda , Células-Tronco
7.
Front Cardiovasc Med ; 9: 942000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440048

RESUMO

Objectives: Most studies have examined the association between serum copper and myocardial infarction, but there is little evidence of the association between dietary copper intake and myocardial infarction. Materials and methods: The study included a total of 14,876 participants from the 2011 to 2018 National Health and Nutrition Examination Survey (NHANES). Multivariate logistic regression model was used to analyze the association between dietary copper intake and the risk of myocardial infarction. To reduce selection bias, we use nearest neighbor propensity score matching (PSM) in a 1:2 ratio. Restricted cubic spline (RCS) method is used to study the non-linear relationship. Subgroup stratification was used to further investigate the association between copper intake and myocardial infarction. Results: The median dietary copper intake was 1.0825 mg/day. A myocardial infarction had occurred in approximately 4.4% (655) of the participants. Before and after matching, multivariate logistic regression models revealed a negative correlation between dietary copper intake and the risk of myocardial infarction. The higher quartile of subjects had a noticeably lower risk of myocardial infarction in comparison to those in the first quartile of copper intake. According to RCS findings, dietary copper intake and myocardial infarction have a non-linear and dose-response relationship. According to stratified analysis, the dietary copper intake was a substantial protective element for those who were ≥ 50 years old, female, 25 ≤BMI <30, with history of smoking, hypertension, diabetes and ortholiposis. Conclusion: Increased dietary copper intake was associated with a lower risk of myocardial infarction. It is especially significant in elderly-aged women, overweight individuals, smokers, hypertension, and diabetic patients.

8.
Biol Direct ; 17(1): 32, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384975

RESUMO

BACKGROUND: Cardiac fibrosis is a leading cause of cardiac dysfunction in patients with diabetes. However, the underlying mechanisms of cardiac fibrosis remain unclear. This study aimed to investigate the role of the long non-coding RNA (LncRNA) Airn in the pathogenesis of cardiac fibrosis in diabetic cardiomyopathy (DCM) and its underlying mechanism. METHODS: Diabetes mellitus (DM) was induced in mice by streptozotocin injection. An intramyocardial adeno-associated virus (AAV) was used to manipulate Airn expression. The functional significance and underlying mechanisms in DCM fibrosis were investigated both in vitro and in vivo. RESULTS: Diabetic hearts showed a significant impairment in cardiac function, accompanied by obviously increased cardiac fibrosis. Interestingly, lncRNA Airn expression was significantly decreased in both diabetic hearts and high glucose (HG)-treated cardiac fibroblasts (CFs). AAV-mediated Airn reconstitution prevented cardiac fibrosis and the development of DCM, while Airn knockdown induced cardiac fibrosis phenotyping DCM. As in vitro, Airn reversed HG-induced fibroblast-myofibroblast transition, aberrant CFs proliferation and section of collagen I. In contrast, Airn knockdown mimicked a HG-induced CFs phenotype. Mechanistically, we identified that Airn exerts anti-fibrotic effects by directly binding to insulin-like growth factor 2 mRNA-binding protein 2 (IMP2) and further prevents its ubiquitination-dependent degradation. Moreover, we revealed that Airn/IMP2 protected p53 mRNA from degradation in m6A manner, leading to CF cell cycle arrest and reduced cardiac fibrosis. As a result, ablation of p53 blunted the inhibitory effects of Airn on fibroblast activation and cardiac fibrosis. CONCLUSIONS: Our study demonstrated for the first time that Airn prevented the development of cardiac fibrosis in diabetic heart via IMP2-p53 axis in an m6A dependent manner. LncRNA Airn could be a promising therapeutic target for cardiac fibrosis in DCM.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , RNA Longo não Codificante , Proteínas de Ligação a RNA , Proteína Supressora de Tumor p53 , Animais , Camundongos , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Front Immunol ; 13: 946202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189231

RESUMO

B-1 lymphocytes exhibit specialized roles in host defense against multiple pathogens. Despite the fact that CD19+CD93+B220lo/- B cells have been identified as B-1 progenitors, the definition for B-1 progenitors remains to be elucidated as CD19+CD93+B220+ B cells are capable to give rise to B-1 cells. Given that transcription factor Bhlhe41 is highly and preferentially expressed in B-1 cells and regulates B-1a cell development, we generated a transgenic mouse model, Bhlhe41dTomato-Cre , for fate mapping and functional analysis of B-1 cells. Bhlhe41dTomato-Cre mice efficiently traced Bhlhe41 expression, which was mainly restricted to B-1 cells in B-cell lineage. We showed an efficient and specific Cre-mediated DNA recombination in adult B-1 cells and neonatal B-1 progenitors rather than B-2 cells by flow cytometric analysis of Bhlhe41 dTomato-Cre/+ Rosa26 EYFP mice. Treatment of Bhlhe41 dTomato-Cre/+ Rosa26 iDTR mice with diphtheria toxin revealed a robust efficacy of B-1 cell depletion. Interestingly, using Bhlhe41 dTomato-Cre mice, we demonstrated that neonatal B-1 progenitors (CD19+CD93+B220lo/-) expressed Bhlhe41 and were identical to well-defined transitional B-1a progenitors (CD19+CD93+B220lo/-CD5+), which only gave rise to peritoneal B-1a cells. Moreover, we identified a novel population of neonatal splenic CD19hidTomato+B220hiCD43loCD5lo B cells, which differentiated to peritoneal B-1a and B-1b cells. Bhlhe41 deficiency impaired the balance between CD19hidTomato+B220lo/-CD5hi and CD19hidTomato+B220hiCD5lo cells. Hence, we identified neonatal CD19hidTomato+B220hiCD43loCD5lo B cells as novel transitional B-1 progenitors. Bhlhe41 dTomato-Cre/+ mouse can be used for fate mapping and functional studies of B-1 cells in host-immune responses.


Assuntos
Subpopulações de Linfócitos B , Animais , Antígenos CD19/genética , Antígenos CD19/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/metabolismo , Toxina Diftérica/metabolismo , Modelos Animais de Doenças , Integrases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Transcrição/metabolismo
10.
Cancer Discov ; 12(12): 2820-2837, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36122307

RESUMO

Isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) has a dismal prognosis. A better understanding of tumor evolution holds the key to developing more effective treatment. Here we study GBM's natural evolutionary trajectory by using rare multifocal samples. We sequenced 61,062 single cells from eight multifocal IDH wild-type primary GBMs and defined a natural evolution signature (NES) of the tumor. We show that the NES significantly associates with the activation of transcription factors that regulate brain development, including MYBL2 and FOSL2. Hypoxia is involved in inducing NES transition potentially via activation of the HIF1A-FOSL2 axis. High-NES tumor cells could recruit and polarize bone marrow-derived macrophages through activation of the FOSL2-ANXA1-FPR1/3 axis. These polarized macrophages can efficiently suppress T-cell activity and accelerate NES transition in tumor cells. Moreover, the polarized macrophages could upregulate CCL2 to induce tumor cell migration. SIGNIFICANCE: GBM progression could be induced by hypoxia via the HIF1A-FOSL2 axis. Tumor-derived ANXA1 is associated with recruitment and polarization of bone marrow-derived macrophages to suppress the immunoenvironment. The polarized macrophages promote tumor cell NES transition and migration. This article is highlighted in the In This Issue feature, p. 2711.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Isocitrato Desidrogenase/genética , Prognóstico , Hipóxia/genética
11.
Cancer Res ; 82(18): 3321-3334, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35841593

RESUMO

Glioblastoma (GBM) is a complex ecosystem that includes a heterogeneous tumor population and the tumor-immune microenvironment (TIME), prominently containing tumor-associated macrophages (TAM) and microglia. Here, we demonstrated that ß2-microglobulin (B2M), a subunit of the class I major histocompatibility complex (MHC-I), promotes the maintenance of stem-like neoplastic populations and reprograms the TIME to an anti-inflammatory, tumor-promoting state. B2M activated PI3K/AKT/mTOR signaling by interacting with PIP5K1A in GBM stem cells (GSC) and promoting MYC-induced secretion of transforming growth factor-ß1 (TGFß1). Inhibition of B2M attenuated GSC survival, self-renewal, and tumor growth. B2M-induced TGFß1 secretion activated paracrine SMAD and PI3K/AKT signaling in TAMs and promoted an M2-like macrophage phenotype. These findings reveal tumor-promoting functions of B2M and suggest that targeting B2M or its downstream axis may provide an effective approach for treating GBM. SIGNIFICANCE: ß2-microglobulin signaling in glioblastoma cells activates a PI3K/AKT/MYC/TGFß1 axis that maintains stem cells and induces M2-like macrophage polarization, highlighting potential therapeutic strategies for targeting tumor cells and the immunosuppressive microenvironment in glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Microambiente Tumoral , Microglobulina beta-2/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Ecossistema , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Células-Tronco/patologia , Serina-Treonina Quinases TOR , Fator de Crescimento Transformador beta1 , Macrófagos Associados a Tumor
12.
Int Immunopharmacol ; 101(Pt B): 108296, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34794889

RESUMO

Inflammation modulation is currently considered a promising therapeutic strategy to counteract the burden of cardiovascular disease. Amentoflavone (AME) is a natural biflavone with two apigenin molecules that, possess promising anti-inflammatory, anti-oxidative, and anti-cancer properties. In the present study, we aimed to investigate the effects of AME on myocardial ischemia-reperfusion injury in vivo and in vitro, and to elucidate the underlying mechanism. Our results showed that AME significantly reduced the levels of LDH, CK-MB, IL-6, IL-1ß, and TNF-α after hypoxia (H) 12 h/reoxygenation (R) 4 h treatment, and significantly increased the cell survival rate of H9c2 cardiomyocytes induced by H/R and inhibited their apoptosis rate. AME (25, 50, 100 mg·kg-1·d-1, i.g.) or a positive control drug diltiazem (DIZ) (16 mg·kg-1·d-1, i.g.) was used as pretreatment for 7 days; the myocardial ischemia-reperfusion(I/R) model was established. TTC staining results showed that the infarct volume was significantly reduced after AME and DIZ treatment. Oral administration of AME dose-dependently ameliorated I/R injury-induced increase in pro-inflammatory factors (IL-6, IL-1ß, and TNF-α) and levels of LDH and CK-MB. Results of TUNEL and HE staining showed that the I/R model had more induced apoptosis, but could be effectively reduced by pretreatment with AME. After surgery, the heart of the rat was examined via western blotting to detect inflammation-related proteins. Compared with the sham group, the p-AKT in the I/R group was significantly reduced and the content of p-NF-κBp65 was significantly increased. However, these changes could be reversed by AME treatment. DIZ treatment exerted similar beneficial effects in I/R rats as the high dose of AME did. This study highlights the excellent therapeutic potential of AME for managing myocardial ischemia-reperfusion injury.


Assuntos
Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Apigenina/farmacologia , Apoptose/efeitos dos fármacos , Biflavonoides , Inflamação/tratamento farmacológico , Interleucina-1beta , Masculino , Isquemia Miocárdica/tratamento farmacológico , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
13.
Mol Ther Nucleic Acids ; 25: 25-36, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34168916

RESUMO

A number of studies indicate that circular RNAs (circRNAs) play paramount roles in regulating the biological behavior of glioblastoma multiforme (GBM). In this study, we investigated the underlying mechanism of circMELK in GBM. Real-time PCRs were used to examine the expression of circMELK in glioma tissues and normal brain tissues (NBTs). Localization of circMELK in GBM cells was estimated by fluorescence in situ hybridization (FISH). Transwell migration and three-dimensional invasion assays were performed to examine glioma cell migration and invasion in vitro. Spheroid formation, clonogenicity, and cell viability assays were implemented to test the stemness of glioma stem cells (GSCs). The functions of circMELK in vivo were investigated in a xenograft nude-mouse model. We have proved that circMELK functions as a sponge for tumor suppressor microRNA-593 (miR-593) by RNA immunoprecipitation and circRNA precipitation assays, which targets the oncogenic gene Eph receptor B2 (EphB2). Dual-luciferase reporter assays were adopted to estimate the interactions between miR-593 and circMELK or EphB2. We demonstrated that circMELK was upregulated in GBM, acting as an oncogene and regulating GBM mesenchymal transition and GSC maintenance via sponging of miR-593. Furthermore, we found that EphB2 was involved in circMELK/miR-593 axis-induced GBM tumorigenesis. This function opens the opportunity for the development of a novel therapeutic target for the treatment of gliomas.

14.
Cancer Cell Int ; 21(1): 182, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766042

RESUMO

BACKGROUND: Previous studies have found that the microenvironment of cervical cancer (CESC) affects the progression and treatment of this disease. Thus, we constructed a multigene model to assess the survival of patients with cervical cancer. METHODS: We scored 307 CESC samples from The Cancer Genome Atlas (TCGA) and divided them into high and low matrix and immune scores using the ESTIMATE algorithm for differential gene analysis. Cervical cancer patients were randomly divided into a training group, testing group and combined group. The multigene signature prognostic model was constructed by Cox analyses. Multivariate Cox analysis was applied to evaluate the significance of the multigene signature for cervical cancer prognosis. Prognosis was assessed by Kaplan-Meier curves comparing the different groups, and the accuracy of the prognostic model was analyzed by receiver operating characteristic-area under the curve (ROC-AUC) analysis and calibration curve. The Tumor Immune Estimation Resource (TIMER) database was used to analyze the relationship between the multigene signature and immune cell infiltration. RESULTS: We obtained 420 differentially expressed genes in the tumor microenvironment from 307 patients with cervical cancer. A three-gene signature (SLAMF1, CD27, SELL) model related to the tumor microenvironment was constructed to assess patient survival. Kaplan-Meier analysis showed that patients with high risk scores had a poor prognosis. The ROC-AUC value indicated that the model was an accurate predictor of cervical cancer prognosis. Multivariate cox analysis showed the three-gene signature to be an independent risk factor for the prognosis of cervical cancer. A nomogram combining the three-gene signature and clinical features was constructed, and calibration plots showed that the nomogram resulted in an accurate prognosis for patients. The three-gene signature was associated with T stage, M stage and degree of immune infiltration in patients with cervical cancer. CONCLUSIONS: This research suggests that the developed three-gene signature may be applied as a biomarker to predict the prognosis of and personalized therapy for CESC.

15.
Front Genet ; 11: 533628, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173530

RESUMO

BACKGROUND: This study searched for immune-related long noncoding RNAs (lncRNAs) to predict the prognosis of patients with cervical cancer. METHOD: We obtained immunologically relevant lncRNA expression profiles and clinical follow-up data from cervical cancer patients from The Cancer Genome Atlas database and the Molecular Signatures Database. Cervical cancer patients were randomly divided into a training group, testing group and combined group. The immune prognostic signature was constructed by Least Absolute Shrinkage and Selection Operator Cox regression, prognosis was analyzed by Kaplan-Meier curves between different groups, and the accuracy of the prognostic model was assessed by receiver operating characteristic-area under the curve (ROC-AUC) analysis. RESULTS: A six-lncRNA immune prognostic signature (LIPS) was constructed to predict the prognosis of cervical cancer. The six lncRNAs are as follows: AC009065.8, LINC01871, MIR210HG, GEMIN7-AS1, GAS5-AS1, and DLEU1. A ROC-AUC analysis indicated that the model could predict the prognosis of cervical cancer patients in different subgroups. A Kaplan-Meier analysis showed that patients with high risk scores had a poor prognosis; these results were equally meaningful in the subgroup analyses. Risk scores differed depending on the clinical pathology and tumor grade and were independent risk factors for cervical cancer prognosis. Gene set enrichment analysis revealed an association between the LIPS and the immune response, Wnt signaling pathway, and TGF beta signaling pathway. CONCLUSION: Our study shows that the six-LIPS can predict the prognosis of cervical cancer and contribute to decisions regarding the immunotherapeutic strategy.

16.
Front Genet ; 11: 570325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193668

RESUMO

BACKGROUND: Gastric cancer is one of the most common malignant tumors and has a poor prognosis. Hypoxia is related to the poor prognosis of cancer patients. We searched for hypoxia-related long non-coding RNAs (lncRNAs) to predict both overall survival (OS) and disease-free survival (DFS) of gastric cancer patients. METHODS: We obtained hypoxia-related lncRNA expression profiles and clinical follow-up data of patients with gastric cancer from The Cancer Genome Atlas and the Molecular Signatures Database. The patients were randomly divided into a training group, test group and combined group. The hypoxia-related prognostic signature was constructed by Lasso regression and Cox regression models, the prognoses in different groups were compared by Kaplan-Meier (K-M) analysis, and the accuracy of the prognostic model was assessed by receiver operating characteristic (ROC) analysis. RESULTS: A hypoxia-related prognostic signature comprising 10 lncRNAs was constructed to predict both OS and DFS in gastric cancer. In the training, test and combined groups, patients were divided into high- and low-risk groups according to the formula. Kaplan-Meier analysis showed that patients in the high-risk group have poor prognoses, and the difference was significant in the subgroup analyses. Receiver operating characteristic analysis revealed that the predictive power of the model prediction is more accurate than that of standard benchmarks. The signature differed across Helicobacter pylori (Hp) status and T stages. Multivariate Cox analysis showed that the signature is an independent risk factor for both OS and DFS. A clinically predictive nomogram combining the lncRNA signature and clinical features was constructed; the nomogram accurately predicted both OS and DFS and had high clinical application value. Weighted correlation network analysis combined with enrichment analysis showed that the primary pathways were the PI3K-Akt, JAK-STAT, and IL-17 signaling pathways. The target genes NOX4, COL8A1, and CHST1 were associated with poor prognosis in the Gene Expression Profiling Interactive Analysis, Gene Expression Omnibus, and K-M Plotter databases. CONCLUSIONS: Our 10-lncRNA prognostic signature and nomogram are accurate, reliable tools for predicting both OS and DFS in gastric cancer.

17.
BMC Microbiol ; 20(1): 171, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32560675

RESUMO

BACKGROUND: Euglena is a new super health food resource that is rich in the natural polysaccharide paramylon, a linear ß-1,3-glucan with various biological activities including activity on the immune system in different cell lines and animals. Despite these reports, the immune regulation mechanism of paramylon is still unclear. RESULTS: We investigate the signaling pathways paramylon impacts in immune macrophages. In RAW264.7 macrophages, sonicated and alkalized paramylon oligomers up-regulated inducible nitric oxide synthase (iNOS) and increased secretion of nitric oxide (NO), interleukin (IL)-6 and tumor necrosis factor (TNF)-α, in a concentration-dependent manner. In addition, paramylon activated the nuclear factor-κB(NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and inhibiting these pathways attenuated the paramylon-induced secretion of the above immune-mediators. CONCLUSIONS: These results demonstrate that Euglena gracilis paramylon modulates the immune system via activation of the NF-κB and MAPK signaling pathways and thus has potential therapeutic benefits.


Assuntos
Euglena gracilis/metabolismo , Glucanos/farmacologia , Macrófagos/parasitologia , Transdução de Sinais/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Glucanos/imunologia , Interleucina-6/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Sonicação , Fator de Necrose Tumoral alfa/metabolismo
18.
Biochem Cell Biol ; 98(2): 120-129, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31063699

RESUMO

Sirt6 has been reported to play a protective role in macrophage foam cell formation, but whether Sirt6 controls atherosclerosis plaque stability and whether it can reduce the interaction between endothelial cells and macrophages remains unclear. The aim of this study was to investigate the effect of Sirt6 on atherosclerosis plaque stability and the underlying mechanisms. We used Tie2-Cre transgenic mice as a Cre-lox tool to delete Sirt6 floxed sequences in endothelial cells during adulthood to establish Sirt6-/- mice. ApoE-/-:Sirt6-/- and ApoE-/-:Sirt6Tg mice were used in our investigation. After a 16 week high-fat diet, the mice developed markedly atherosclerotic plaques. Sirt6 knockout exacerbated atherosclerotic plaque progression in both size and stability. In vitro, murine macrophage RAW264.7 cells were treated with ox-low density lipoproteins for 24 h to simulate atherosclerosis. Furthermore, Sirt6 overexpression remarkably increased autophagic flux in macrophages and inhibited macrophage apoptosis. Moreover, Sirt6 overexpression inhibited the expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and platelet selectin (P-selectin), leading to reduced infiltration of macrophages and foam cells. In conclusion, our study indicates a new mechanism-based strategy to therapeutically stimulate atherosclerosis plaque stability.


Assuntos
Aterosclerose/metabolismo , Autofagia , Células Endoteliais/citologia , Macrófagos/citologia , Placa Aterosclerótica/genética , Sirtuínas/genética , Animais , Aterosclerose/genética , Progressão da Doença , Células Espumosas/metabolismo , Inflamação , Molécula 1 de Adesão Intercelular/metabolismo , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Knockout para ApoE , Selectina-P/metabolismo , Células RAW 264.7 , Receptor TIE-2/genética , Sirtuínas/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
19.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1677-1689, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30954556

RESUMO

Ischemic post-conditioning (IPO) activates Akt signaling to confer cardioprotection. The responsiveness of diabetic hearts to IPO is impaired. We hypothesized that decreased cardiac SIRT1, a positive regulator of Akt, may be responsible for the impaired responsiveness of diabetic hearts to IPO-mediated cardioprotection. High-fat diet and streptozotocin-induced diabetic mice were subjected to myocardial ischemia/reperfusion (MI/R, 30 min ischemia and 180 min reperfusion) or IPO (three cycles of 10 s of reperfusion and ischemia at the onset of reperfusion). Adenoviral vectors encoding GFP or SIRT1 (Ad-SIRT1) were administered by direct injection into the left ventricular. Our results showed that IPO activated the Akt signaling pathway and reduced MI/R injury in non-diabetic hearts but not in diabetic hearts, in which reduced expression of SIRT1 and increased Akt acetylation were observed. Delivery of Ad-SIRT1 into the diabetic hearts reduced Akt acetylation and restored the cardioprotective effects of IPO by modulating Akt signaling pathway. In contrast, cardiac-specific SIRT1 knockout increased Akt acetylation and blunted the cardioprotective effects of IPO. In in vitro study, transfection with wild-type SIRT1 but not inactive mutant SIRT1 reduced the expression of Akt acetylation and restored the protective effects of hypoxic post-conditioning in high glucose-incubated cardiomyocytes. Moreover, the cardiomyocytes transfected with constitutive Akt acetylation showed repressed Akt phosphorylation and blunted protective effects against hypoxia/reoxygenation injury. These findings demonstrate that the reduction of SIRT1 blunts the protective effects of IPO by impairing Akt signaling pathway and that SIRT1 up-regulation restores IPO-mediated cardioprotection in diabetic mice via deacetylation-dependent activation of Akt signaling pathway.


Assuntos
Diabetes Mellitus Experimental/genética , Pós-Condicionamento Isquêmico , Traumatismo por Reperfusão Miocárdica/genética , Proteínas Proto-Oncogênicas c-akt/genética , Sirtuína 1/genética , Acetilação , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica , Glucose/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Estreptozocina
20.
Curr Neuropharmacol ; 17(2): 184-196, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28925884

RESUMO

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, enduring, and often irreversible adverse effect of many antineoplastic agents, among which sensory abnormities are common and the most suffering issues. The pathogenesis of CIPN has not been completely understood, and strategies for CIPN prevention and treatment are still open problems for medicine. OBJECTIVES: The objective of this paper is to review the mechanism-based therapies against sensory abnormities in CIPN. METHODS: This is a literature review to describe the uncovered mechanisms underlying CIPN and to provide a summary of mechanism-based therapies for CIPN based on the evidence from both animal and clinical studies. RESULTS: An abundance of compounds has been developed to prevent or treat CIPN by blocking ion channels, targeting inflammatory cytokines and combating oxidative stress. Agents such as glutathione, mangafodipir and duloxetine are expected to be effective for CIPN intervention, while Ca/Mg infusion and venlafaxine, tricyclic antidepressants, and gabapentin display limited efficacy for preventing and alleviating CIPN. And the utilization of erythropoietin, menthol and amifostine needs to be cautious regarding to their side effects. CONCLUSIONS: Multiple drugs have been used and studied for decades, their effect against CIPN are still controversial according to different antineoplastic agents due to the diverse manifestations among different antineoplastic agents and complex drug-drug interactions. In addition, novel therapies or drugs that have proven to be effective in animals require further investigation, and it will take time to confirm their efficacy and safety.


Assuntos
Antineoplásicos/efeitos adversos , Fármacos Neuroprotetores/uso terapêutico , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Animais , Quimioterapia Combinada , Humanos , Inflamação/complicações , Inflamação/prevenção & controle , Doenças do Sistema Nervoso Periférico/complicações , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA