Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 24(9): 1033-1046, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37448165

RESUMO

Lipase is involved in lipid hydrolysis, which is related to nematodes' energy reserves and stress resistance. However, the role of lipases in Bursaphelenchus xylophilus, a notorious plant-parasitic nematode responsible for severe damage to pine forest ecosystems, remains largely obscure. Here, we characterized a class III lipase as a candidate effector and named it BxLip-3. It was transcriptionally up-regulated in the parasitic stages of B. xylophilus and specifically expressed in the oesophageal gland cells and the intestine. In addition, BxLip-3 suppressed cell death triggered by the pathogen-associated molecular patterns PsXEG1 and BxCDP1 in Nicotiana benthamiana, and its Lipase-3 domain is essential for immunosuppression. Silencing of the BxLip-3 gene resulted in a delay in disease onset and increased the activity of antioxidant enzymes and the expression of pathogenesis-related (PR) genes. Plant chitinases are thought to be PR proteins involved in the defence system against pathogen attack. Using yeast two-hybrid and co-immunoprecipitation assays, we identified two class I chitinases in Pinus thunbergii, PtChia1-3 and PtChia1-4, as targets of BxLip-3. The expression of these two chitinases was up-regulated during B. xylophilus inoculation and inhibited by BxLip-3. Overall, this study illustrated that BxLip-3 is a crucial virulence factor that plays a critical role in the interaction between B. xylophilus and host pine.


Assuntos
Quitinases , Pinus , Tylenchida , Animais , Xylophilus , Ecossistema , Quitinases/genética , Pinus/parasitologia , Tylenchida/genética , Doenças das Plantas/parasitologia
2.
Front Plant Sci ; 13: 937473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991456

RESUMO

The migratory plant-parasitic nematode Bursaphelenchus xylophilus is the pathogen of the pine wilt disease (PWD), causing serious damage to pine forests in China. During the process of plant resistance to multiple pathogens, plant immunity plays a key role. In this current study, the pathogen-associated molecular pattern (PAMP) BxCDP1 in B. xylophilus has been identified, but the host target protein of BxCDP1 and its key amino acid region inducing the plant immunity have yet to be elucidated. We found that BxCDP1 could trigger superoxide production, H2O2 production, and callose deposits. A RING-H2 finger protein 1 (RHF1) of Pinus thunbergii was screened and characterized as a target protein of BxCDP1 by yeast two-hybrid and co-immunoprecipitation (Co-IP). Moreover, two peptides (namely M9 and M16) proved to be key regions of BxCDP1 to induce PAMP-triggered immunity (PTI) in Nicotiana benthamiana, which also induced the expression of pathogenesis-related (PR) genes (PtPR-3, PtPR-4, and PtPR-5) in P. thunbergii and enhanced the resistance of the host to B. xylophilus. These results indicate that BxCDP1 plays a critical role in the interaction between B. xylophilus and P. thunbergii, and both peptides M9 and M16 have the potential to be developed and utilized as immune inducers of pines against B. xylophilus in future.

3.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742858

RESUMO

Bursaphelenchus xylophilus is the most economically important species of migratory plant-parasitic nematodes (PPNs) and causes severe damage to forestry in China. The successful infection of B. xylophilus relies on the secretion of a repertoire of effector proteins. The effectors, which suppress the host pine immune response, are key to the facilitation of B. xylophilus parasitism. An exhaustive list of candidate effectors of B. xylophilus was predicted, but not all have been identified and characterized. Here, an effector, named BxSCD3, has been implicated in the suppression of host immunity. BxSCD3 could suppress pathogen-associated molecular patterns (PAMPs) PsXEG1- and INF1-triggered cell death when it was secreted into the intracellular space in Nicotiana benthamiana. BxSCD3 was highly up-regulated in the early infection stages of B. xylophilus. BxSCD3 does not affect B. xylophilus reproduction, either at the mycophagous stage or the phytophagous stage, but it contributes to the virulence of B. xylophilus. Moreover, BxSCD3 significantly influenced the relative expression levels of defense-related (PR) genes PtPR-3 and PtPR-6 in Pinus thunbergii in the early infection stage. These results suggest that BxSCD3 is an important toxic factor and plays a key role in the interaction between B. xylophilus and host pine.


Assuntos
Pinus , Rabditídios , Tylenchida , Animais , Pinus/parasitologia , Doenças das Plantas/parasitologia , Tylenchida/genética , Virulência/genética , Xylophilus
4.
Mol Plant Pathol ; 22(11): 1399-1412, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34396673

RESUMO

The plant-parasitic nematode Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD), causes enormous economic loss every year. Currently, little is known about the pathogenic mechanisms of PWD. Several effectors have been identified in B. xylophilus, but their functions and host targets have yet to be elucidated. Here, we demonstrated that BxSCD1 suppresses cell death and inhibits B. xylophilus PAMP BxCDP1-triggered immunity in Nicotiana benthamiana and Pinus thunbergii. BxSCD1 was transcriptionally upregulated in the early stage of B. xylophilus infection. In situ hybridization experiments showed that BxSCD1 was specifically expressed in the dorsal glands and intestine. Cysteine residues are essential for the function of BxSCD1. Transient expression of BxSCD1 in N. benthamiana revealed that it was primarily targeted to the cytoplasm and nucleus. The morbidity was significantly reduced in P. thunbergii infected with B. xylophilus when BxSCD1 was silenced. We identified 1-aminocyclopropane-1-carboxylate oxidase 1, the actual ethylene-forming enzyme, as a host target of BxSCD1 by yeast two-hybrid and coimmunoprecipitation. Overall, this study illustrated that BxSCD1 played a critical role in the B. xylophilus-plant interaction.


Assuntos
Pinus , Rabditídios , Tylenchida , Animais , Liases , Doenças das Plantas , Imunidade Vegetal
5.
BMC Plant Biol ; 21(1): 224, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011295

RESUMO

BACKGROUND: The pine wood nematode (PWN), Bursaphelenchus xylophilus, is a devastating pathogen of many Pinus species in China. The aim of this study was to understand the interactive molecular mechanism of PWN and its host by comparing differentially expressed genes and candidate effectors from three transcriptomes of B. xylophilus at different infection stages. RESULTS: In total, 62, 69 and 46 candidate effectors were identified in three transcriptomes (2.5 h postinfection, 6, 12 and 24 h postinoculation and 6 and 15 d postinfection, respectively). In addition to uncharacterized pioneers, other candidate effectors were involved in the degradation of host tissues, suppression of host defenses, targeting plant signaling pathways, feeding and detoxification, which helped B. xylophilus survive successfully in the host. Seven candidate effectors were identified in both our study and the B. xylophilus transcriptome at 2.5 h postinfection, and one candidate effector was identified in all three transcriptomes. These common candidate effectors were upregulated at infection stages, and one of them suppressed pathogen-associated molecular pattern (PAMP) PsXEG1-triggered cell death in Nicotiana benthamiana. CONCLUSIONS: The results indicated that B. xylophilus secreted various candidate effectors, and some of them continued to function throughout all infection stages. These various candidate effectors were important to B. xylophilus infection and survival, and they functioned in different ways (such as breaking down host cell walls, suppressing host defenses, promoting feeding efficiency, promoting detoxification and playing virulence functions). The present results provide valuable resources for in-depth research on the pathogenesis of B. xylophilus from the perspective of effectors.


Assuntos
Interações Hospedeiro-Parasita/genética , Infecções/genética , Nematoides/genética , Nematoides/parasitologia , Parasitos/genética , Pinus/parasitologia , Virulência/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas
6.
Mol Plant Pathol ; 21(7): 923-935, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32319206

RESUMO

The migratory plant-parasitic nematode Bursaphelenchus xylophilus is the causal agent of pine wilt disease, which causes serious damage to pine forests in China. Plant immunity plays an important role in plant resistance to multiple pathogens. Activation of the plant immune system is generally determined by immune receptors, including plant pattern recognition receptors, which mediate pattern recognition. However, little is known about molecular pattern recognition in the interaction between pines and B. xylophilus. Based on the B. xylophilus transcriptome at the early stages of infection and Agrobacterium tumefaciens-mediated transient expression and infiltration of recombinant proteins produced by Pichia pastoris in many plant species, a novel molecular pattern (BxCDP1) was characterized in B. xylophilus. We found that BxCDP1 was highly up-regulated at the early infection stages of B. xylophilus, and was similar to a protein in Pararhizobium haloflavum. BxCDP1 triggered cell death in Nicotiana benthamiana when secreted into the apoplast, and this effect was dependent on brassinosteroid-insensitive 1-associated kinase 1, but independent of suppressor of BIR1-1. BxCDP1 also exhibited cell death-inducing activity in pine, Arabidopsis, tomato, pepper, and lettuce. BxCDP1 triggered reactive oxygen species production and the expression of PAMP-triggered immunity marker genes (NbAcre31, NbPTI5, and NbCyp71D20) in N. benthamiana. It also induced the expression of pathogenesis-related genes (PtPR-3, PtPR-4, and PtPR-5) in Pinus thunbergii. These results suggest that as a new B. xylophilus molecular pattern, BxCDP1 can not only be recognized by many plant species, but also triggers innate immunity in N. benthamiana and defence responses of P. thunbergii.


Assuntos
Proteínas de Helminto/imunologia , Moléculas com Motivos Associados a Patógenos/imunologia , Pinus/imunologia , Pinus/parasitologia , Imunidade Vegetal , Rabditídios/imunologia , Animais , Morte Celular , Pinus/genética , Células Vegetais , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Nicotiana/genética
7.
Mol Plant Microbe Interact ; 32(4): 452-463, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30351223

RESUMO

The pine wood nematode (PWN) Bursaphelenchus xylophilus has caused serious damage to pine forests in China. Effectors secreted by phytonematodes play a role in host infection. We identified and characterized an effector, BxSapB1, based on the B. xylophilus transcriptome at the early stages of infection and the transient expression of proteins in Nicotiana benthamiana. BxSapB1 triggered cell death in N. benthamiana when secreted into the apoplast, and this effect was independent of N. benthamiana brassinosteroid-insensitive 1-associated kinase 1 (NbBAK1) and suppressor of BIR1-1 (NbSOBIR1). The signal peptide of BxSapB1 was proven to be functional in yeast using the yeast signal sequence trap system and BxSapB1 was strongly expressed in the subventral gland cells of B. xylophilus, as revealed by in-situ hybridization. In addition, based on local BLAST analysis, the BxSapB1 showed 100% identity to BUX.s00139.62, which was identified from the B. xylophilus secretome during Pinus thunbergii infection. BxSapB1 was upregulated in a highly virulent strain and downregulated in a weakly virulent strain of PWN at the early stages of infection. RNA interference assays showed that silencing BxSapB1 resulted in decreased expression of pathogenesis-related genes (PtPR-1b, PtPR-3, and PtPR-5) as well as delayed onset of symptoms in P. thunbergii infected by B. xylophilus. The combined data suggest that BxSapB1 can trigger cell death in N. benthamiana and that it contributes to the virulence in B. xylophilus during parasitic interaction.


Assuntos
Pinus , Tylenchida , Virulência , Animais , Morte Celular , China , Pinus/parasitologia , Tylenchida/genética , Tylenchida/patogenicidade , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA