Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 862008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574423

RESUMO

ROS1-rearranged patients account for 1-2% of non-small cell lung cancer (NSCLC) cases. Approximately 10 fusion partners have been discovered, while clinical practice is actively generating knowledge of new ones and their therapeutic responses. Herein, we report a patient with stage IV NSCLC that harbored a novel TPR-ROS1 fusion, which demonstrated a rapid but short partial response to first line crizotinib and primary resistance to subsequent ceritinib. Computed tomography detected a pulmonary nodule in a 53-year-old woman who presented with persistent cough. Histopathologic and molecular examination of the tissue biopsy indicated a poorly differentiated adenocarcinoma staining negative for PD-L1 but harbored a novel translocated promoter region (TPR)-ROS1 (T4:R35) gene fusion. Frontline crizotinib monotherapy elicited a rapid partial response after 1 month, although the disease progressed another 2 months later. After another 3 months of continued crizotinib treatment, the patient manifested newly emerged and enlarged lung and brain lesions. Genomic profiling still identified TPR-ROS1 as the only aberration, while a lymph node biopsy indicated PD-L1 immunopositivity. The patient was then treated with ceritinib and progressed within 1 month. She was started on chemotherapy with pemetrexed plus carboplatin and has achieved rapid partial response as of the latest follow-up. In summary, we provided clinical evidence of a novel TPR-ROS1 fusion and its roles as an oncogenic driver in metastatic NSCLC. To the best of our knowledge, ours is the first case to report this fusion in NSCLC. This case was characterized by a rapid yet short-term response to first line crizotinib and primary resistance to subsequent ceritinib, while no known genetic resistance mechanism was identified and other mechanisms including histologic transformation were unlikely. Future research is needed to unveil the resistance mechanism and formulate effective treatment strategies.

2.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 50(4): 537-544, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34704415

RESUMO

Neonatal Fc receptor (FcRn) is a specific receptor for immunoglobulin G (IgG) and albumin, which binds to them in a pH-dependent manner and prevents them from lysosomal degradation to keep a long plasma half-life. In addition, FcRn plays an important role in transmembrane transport of IgG and albumin and in antigen presentation. In autoimmune diseases, anti-FcRn antibody can promote the degradation of pathogenic IgG by competitive binding to FcRn. In infectious diseases, the half-life of drugs can be prolonged by increasing the affinity between therapeutic antibody and FcRn, while the combination of viral antigen and Fc fragment of IgG can cause local immune response of mucosa for disease prevention and treatment. In cancer, albumin as a carrier of anticancer drugs can achieve efficient drug delivery, and FcRn itself may be used as a predictor of the prognosis of cancer patients. This review details the functions of FcRn, highlights its role in autoimmune diseases, infectious diseases and cancer, as well as the mechanism of drug development based on FcRn, to provide a reference for the clinical application and drug development of FcRn.


Assuntos
Doenças Autoimunes , Receptores Fc , Doenças Autoimunes/tratamento farmacológico , Antígenos de Histocompatibilidade Classe I , Humanos , Imunoglobulina G , Recém-Nascido
3.
Molecules ; 22(6)2017 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-28629145

RESUMO

The aim of this research was to prove the speculation that phenylxanthine (PX) derivatives possess adenosine A2A receptor (A2AR)-blocking properties and to screening and evaluate these PX derivatives as dual A2AR antagonists/MAO-B inhibitors for Parkinson's disease. To explore this hypothesis, two series of PX derivatives were prepared and their antagonism against A2AR and inhibition against MAO-B were determined in vitro. In order to evaluate further the antiparkinsonian properties, pharmacokinetic and haloperidol-induced catalepsy experiments were carried out in vivo. The PX-D and PX-E analogues acted as potent A2AR antagonists with Ki values ranging from 0.27 to 10 µM, and these analogues displayed relatively mild MAO-B inhibition potencies, with inhibitor dissociation constants (Ki values) ranging from 0.25 to 10 µM. Further, the compounds PX-D-P6 and PX-E-P8 displayed efficacious antiparkinsonian properties in haloperidol-induced catalepsy experiments, verifying that these two compounds were potent A2AR antagonists and MAO-B inhibitors. We conclude that PX-D and PX-E analogues are a promising candidate class of dual-acting compounds for treating Parkinson's disease.


Assuntos
Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Xantina/química , Xantina/farmacologia , Antagonistas do Receptor A2 de Adenosina/síntese química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Doença de Parkinson/tratamento farmacológico , Ratos , Distribuição Tecidual , Xantina/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA