Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 165: 112531, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869530

RESUMO

Mango is one of the most economically important fruit; however, the gene regulatory mechanism associated with ripening and quality changes during storage remains largely unclear. This study explored the relationship between transcriptome changes and postharvest mango quality. Fruit quality patterns and volatile components were obtained using headspace gas chromatography and ion-mobility spectrometry (HS-GC-IMS). The changes in mango peel and pulp transcriptome were analyzed during four stages (pre-harvesting, harvesting, maturity, and overripe stages). Based on the temporal analysis, multiple genes involved in the biosynthesis of secondary metabolites were upregulated in both the peel and pulp during the mango ripening process. Moreover, cysteine and methionine metabolism related to ethylene synthesis were upregulated in the pulp over time. Weighted gene co-expression network analysis (WGCNA) further showed that the pathways of pyruvate metabolism, citrate cycle, propionate metabolism, autophagy, and SNARE interactions in vesicular transport were positively correlated with the ripening process. Finally, a regulatory network of important pathways from pulp to peel was constructed during the postharvest storage of mango fruit. The above findings provide a global insight into the molecular regulation mechanisms of postharvest mango quality and flavor changes.


Assuntos
Redes Reguladoras de Genes , Mangifera , Animais , Frutas , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Aves
2.
Foods ; 9(4)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276329

RESUMO

Melatonin (MLT) is a vital signaling molecule that regulates multiple physiological processes in higher plants. In the current study, the role of MLT in regulating chilling tolerance and its possible mechanisms in litchi fruit during storage at ambient temperatures after its removal from refrigeration was investigated. The results show that the application of MLT (400 µM, dipping for 20 min) to 'Baitangying' litchi fruit effectively delayed the development of chilling injury (CI) while inhibiting pericarp discoloration, as indicated by higher chromacity values (L*, a*, b*) and anthocyanin levels. MLT treatment suppressed the enhancements of the relative electrical conductivity (REC) and malondialdehyde (MDA) content, which might contribute to the maintenance of membrane integrity in litchi fruit. MLT treatment slowed the decline in cellular energy level, as evidenced by higher adenosine triphosphate (ATP) content and a higher energy charge (EC), which might be ascribed to the increased activities of enzymes associated with energy metabolism including H+-ATPase, Ca2+-ATPase, succinate dehydrogenase (SDH), and cytochrome C oxidase (CCO). In addition, MLT treatment resulted in enhanced proline accumulation, which was likely a consequence of the increased activities of ornithine-δ-aminotransferase (OAT) and Δ1-pyrroline-5-carboxylate synthase (P5CS) and the suppressed activity of proline dehydrogenase (PDH). These results suggest that the enhanced chilling tolerance of litchi fruit after MLT treatment might involve the regulation of energy and proline metabolism.

3.
Arch Virol ; 163(12): 3471-3475, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30136252

RESUMO

A novel virus, tentatively named "areca palm necrotic spindle-spot virus" (ANSSV), was identified in Areca catechu L. in Hainan, China, and its complete genomic sequence was determined. Its positive-sense single-stranded RNA genome is comprised of 9,437 nucleotides (nt), excluding the poly (A) tail, and contains one large open reading frame encoding a polyprotein of 3,019 amino acids (aa). A Blastp search showed that the polyprotein of ANSSV shared a maximum of 31%-32% aa sequence identity (with 86%-95% coverage) with all seven known macluraviruses. Nucleotide sequence comparison of the ORF of ANSSV to those of macluraviruses revealed identities ranging from 41.0% to 44.6%, which is less than the inter-genus identity values for the family Potyviridae. Phylogenetic analysis based on either the aa or nt sequence of the polyprotein did not cluster ANSSV into any established or unassigned genus of the family Potyviridae. Therefore, we suggest that ANSSV is the first member of a previously unrecognized genus of the family Potyviridae.


Assuntos
Areca/virologia , Genoma Viral , Doenças das Plantas/virologia , Potyviridae/genética , Potyviridae/isolamento & purificação , Sequência de Bases , China , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Potyviridae/classificação , Análise de Sequência de DNA
4.
J Agric Food Chem ; 66(28): 7475-7484, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29953220

RESUMO

Melatonin acts as a crucial signaling and antioxidant molecule with multiple physiological functions in organisms. To explore effects of exogenous melatonin on postharvest browning and its possible mechanisms in litchi fruit, 'Ziniangxi' litchi fruits were treated with an aqueous solution of melatonin at 0.4 mM and then stored at 25 °C for 8 days. The results revealed that melatonin strongly suppressed pericarp browning and delayed discoloration during storage. Melatonin treatment reduced relative membrane-leakage rate and inhibited the generation of superoxide radicals (O2-·), hydrogen peroxide (H2O2), and malondialdehyde (MDA). Melatonin treatment markedly promoted the accumulation of endogenous melatonin; delayed loss of total phenolics, flavonoids, and anthocyanins; and enhanced the activities of antioxidant enzymes, including superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), and glutathione reductase (GR, EC 1.6.4.2). By contrast, the activities of browning-related enzymes including polyphenoloxidase (PPO, EC 1.10.3.1) and peroxidase (POD, EC 1.11.1.7) were reduced. In addition, melatonin treatment up-regulated the expression of four genes encoding enzymes for repair of oxidized proteins, including LcMsrA1, LcMsrA2, LcMsrB1, and LcMsB2. These findings indicate that the delay of pericarp browning and senescence by melatonin in harvested litchi fruit could be attributed to the maintenance of redox homeostasis by the improvement of the antioxidant capacity and modulation of the repair of oxidatively damaged proteins.


Assuntos
Antioxidantes/metabolismo , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Litchi/efeitos dos fármacos , Melatonina/farmacologia , Catecol Oxidase/metabolismo , Frutas/efeitos dos fármacos , Frutas/enzimologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Glutationa Redutase/metabolismo , Litchi/enzimologia , Litchi/crescimento & desenvolvimento , Litchi/metabolismo , Fenóis/metabolismo , Proteínas de Plantas/metabolismo , Superóxido Dismutase/metabolismo
5.
Food Chem ; 243: 19-25, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29146327

RESUMO

Fresh-cut (FC) red pitaya fruit were treated with 5ga.i.l-1 apple polyphenols (APP) and then stored at 20°C for up to 4days to evaluate the effects on attributes. Results showed that FC pitaya fruit with APP treatment showed greater colour retention, delayed softening, reduced loss of soluble solids content, titratable acidity, betacyanin and total phenolics compared with untreated FC fruit. APP treatment also maintained antioxidant activity, as indicated by higher DPPH radical-scavenging activity and reducing power compared with untreated FC pitaya fruit. APP treatment strongly suppressed microbial growth, contributing to improvement of product safety. Because APP is a natural product, we propose that application of APP could be a convenient, safe and low-cost approach to maintain the quality and extend the shelf life of FC red pitaya fruit.


Assuntos
Cactaceae/efeitos dos fármacos , Conservação de Alimentos/métodos , Malus/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Antioxidantes/análise , Cactaceae/química , Cactaceae/crescimento & desenvolvimento , Cor , Armazenamento de Alimentos , Frutas/química , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Fenóis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA