Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gene ; 879: 147596, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390873

RESUMO

Sitosterolemia is a rare autosomal recessive hereditary disease caused by loss-of-function genetic mutations in either ATP-binding cassette subfamily G member 5 or member 8 (ABCG5 or ABCG8). Here, we investigate novel variants in ABCG5 and ABCG8 that are associated with the sitosterolemia phenotype. We describe a 32-year-old woman with hypercholesterolemia, tendon and hip xanthomas, autoimmune hemolytic anemia and macrothrombocytopenia from early life, which make us highly suspicious of the possibility of sitosterolemia. A novel homozygous variant in ABCG5 (c.1769C>A, p.S590X) was identified by genomic sequencing. We also examined the lipid profile, especially plant sterols levels, using gas chromatography-mass spectrometry. Functional studies, including western blotting and immunofluorescence staining, showed that the nonsense mutation ABCG5 1769C>A hinders the formation of ABCG5 and ABCG8 heterodimers and the function of transporting sterols. Our study expands the knowledge of variants in sitosterolemia and provides diagnosis and treatment recommendations.


Assuntos
Hipercolesterolemia , Erros Inatos do Metabolismo Lipídico , Fitosteróis , Trombocitopenia , Feminino , Humanos , Adulto , Hipercolesterolemia/genética , Hipercolesterolemia/complicações , Lipoproteínas/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Fitosteróis/efeitos adversos , Fitosteróis/genética , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/complicações , Erros Inatos do Metabolismo Lipídico/diagnóstico , Mutação , Trombocitopenia/genética
2.
Adv Exp Med Biol ; 1372: 189-213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35503182

RESUMO

Sphingolipidoses is a cluster of genetic rare disorders regarding glycosphingolipid metabolism, classified as lysosomal storage disorders (LSD). Here, we focus on eight inheritable diseases, including GM1 gangliosidosis, GM2 gangliosidosis, Fabry disease, Gaucher's disease, metachromatic leukodystrophy, Krabbe disease, Niemann-Pick disease A and B, and Farber disease. Mostly, pathogenic mutations in the key enzyme are loss-function, resulting in accumulation of substrates and deficiency of products. Thus, cellular overload of substrates causes lipotoxicity, which is deleterious to cellular and organ function. In the terms of clinical manifestations in sphingolipidoses, multiple systems and organs, especially central nervous system (CNS) are usually affected. As for diagnosis strategy, enzymatic activity assay and genetic sequencing are helpful. Up till now, limited treatment approaches have approved for treating sphingolipidoses, with some potential strategies for further evaluation. In general, enzyme replacement therapy (ERT), substrate reduction therapy (SRT), and molecular chaperones are feasible choices for enzyme deficiency disorders, but these therapies are limited to relieve CNS lesions and symptoms due to prevention from blood-brain barrier. Other possible treatments such as gene therapy, bone marrow transplantation (BMT), and hematopoietic stem cell transplantation (HSCT) need further evaluation.


Assuntos
Doença de Fabry , Doenças por Armazenamento dos Lisossomos , Esfingolipidoses , Glicoesfingolipídeos , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças Raras/diagnóstico , Doenças Raras/genética , Doenças Raras/terapia , Esfingolipidoses/diagnóstico , Esfingolipidoses/genética , Esfingolipidoses/metabolismo
3.
Poult Sci ; 101(5): 101805, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35344765

RESUMO

Phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme in the serine synthesis pathway. However, the regulatory role of PHGDH in muscle development is unclear. We report that the expression of PHGDH increased significantly during proliferation of chicken skeletal muscle satellite cells. Knockdown of PHGDH by an siRNA suppressed myoblast proliferation, whereas overexpression of PHGDH enhanced muscle cell proliferation. Furthermore, PHGDH promoted the expression of Forkhead box protein M1 (FoxM1). Knockdown of FoxM1 by an siRNA attenuated the proliferation of chicken muscle cells, whereas its overexpression significantly promoted proliferation. Additionally, siRNA-PHGDH inhibited pcDNA3.1-FoxM1-induced FoxM1 expression in chicken muscle cells. Moreover, PHGDH inhibition overcame the stimulation by pcDNA3.1-FoxM1 of cell cycle-related gene expression. We propose that PHGDH accelerates chicken muscle cell proliferation by increasing FoxM1 expression.


Assuntos
Galinhas , Fosfoglicerato Desidrogenase , Animais , Linhagem Celular Tumoral , Proliferação de Células , Galinhas/genética , Galinhas/metabolismo , Células Musculares , Músculos/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA