Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 313: 120080, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36057326

RESUMO

Ractopamine, a synthetic ß-adrenoreceptor agonist, is used as an animal feed additive to increase food conversion efficiency and accelerate lean mass accretion in farmed animals. The U.S. Food and Drug Administration claimed that ingesting products containing ractopamine residues at legal dosages might not cause short-term harm to human health. However, the effect of ractopamine on chronic inflammatory diseases and atherosclerosis is unclear. Therefore, we investigated the effects of ractopamine on atherosclerosis and its action mechanism in apolipoprotein E-null (apoe-/-) mice and human endothelial cells (ECs) and macrophages. Daily treatment with ractopamine for four weeks increased the body weight and the weight of brown adipose tissues and gastrocnemius muscles. However, it decreased the weight of white adipose tissues in apoe-/- mice. Additionally, ractopamine exacerbated hyperlipidemia and systemic inflammation, deregulated aortic cholesterol metabolism and inflammation, and accelerated atherosclerosis. In ECs, ractopamine treatment induced endothelial dysfunction and increased monocyte adhesion and transmigration across ECs. In macrophages, ractopamine dysregulated cholesterol metabolism by increasing oxidized low-density lipoprotein (oxLDL) internalization and decreasing reverse cholesterol transporters, increasing oxLDL-induced lipid accumulation. Collectively, our findings revealed that ractopamine induces EC dysfunction and deregulated cholesterol metabolism of macrophages, which ultimately accelerates atherosclerosis progression.


Assuntos
Aterosclerose , Células Espumosas , Animais , Apolipoproteínas E/genética , Aterosclerose/induzido quimicamente , Colesterol , Células Endoteliais/metabolismo , Humanos , Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Camundongos , Fenetilaminas
2.
Antioxidants (Basel) ; 12(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36670934

RESUMO

Bromelain, a cysteine protease found in pineapple, has beneficial effects in the treatment of inflammatory diseases; however, its effects in cardiovascular pathophysiology are not fully understood. We investigated the effect of bromelain on atherosclerosis and its regulatory mechanisms in hyperlipidemia and atheroprone apolipoprotein E-null (apoe-/-) mice. Bromelain was orally administered to 16-week-old male apoe-/- mice for four weeks. Daily bromelain administration decreased hyperlipidemia and aortic inflammation, leading to atherosclerosis retardation in apoe-/- mice. Moreover, hepatic lipid accumulation was decreased by the promotion of cholesteryl ester hydrolysis and autophagy through the AMP-activated protein kinase (AMPK)/transcription factor EB (TFEB)-mediated upregulation of autophagy- and antioxidant-related proteins. Moreover, bromelain decreased oxidative stress by increasing the antioxidant capacity and protein expression of antioxidant proteins while downregulating the protein expression of NADPH oxidases and decreasing the production of reactive oxygen species. Therefore, AMPK/TFEB signaling may be crucial in bromelain-mediated anti-hyperlipidemia, antioxidant, and anti-inflammatory effects, effecting the amelioration of atherosclerosis.

3.
J Food Drug Anal ; 29(2): 240-254, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696209

RESUMO

Apigenin, a flavonoid isolated from plants, provides protection against non-alcoholic fatty liver disease. However, the mechanism by which apigenin decreases lipid accumulation in the liver is unclear. In this study, we investigated the molecular mechanism underlying the beneficial effect of apigenin on the hepatic deregulation of lipid metabolism. Oleic acid (OA)-induced lipid accumulation in human hepatoma cells (Huh7 cells) was used as an in vitro model. Western blot analysis was used for evaluating protein expression. Oil red O staining, Nile red staining, and conventional assay kits were used to assess the level of lipids. Immunocytochemistry was performed to observe mitochondrial morphology. Seahorse XF analyzer was used to measure mitochondrial bioenergetics. Treatment with OA induced lipid accumulation in Huh7 cells, which was attenuated by apigenin. Mechanistically, treatment with apigenin increased the expression of autophagy-related proteins including Beclin1, autophagy related gene 5 (ATG5), ATG7, and LC3II, and the formation of autophagolysosomes, leading to an increase in intracellular levels of fatty acids. Inhibition of autophagy by bafilomycin A1 or chloroquine abolished the protection of apigenin in OA-induced lipid accumulation. Apigenin up-regulated the protein expression related to the ß-oxidation pathway including acyl-CoA synthetase long chain family member 1, carnitine palmitoyltransferase 1α, acyl-CoA oxidase 1, peroxisome proliferator activated receptor (PPAR) α, and PPARγ coactivator 1-α. Moreover, apigenin increased the mitochondrial network structure and mitochondrial function by increasing the protein expression related to the process of mitochondria fusion and mitochondrial function. Collectively, our findings suggest that apigenin ameliorates hepatic lipid accumulation by activating the autophagy-mitochondrial pathway.


Assuntos
Apigenina , Hepatopatia Gordurosa não Alcoólica , Apigenina/farmacologia , Autofagia , Ácidos Graxos/metabolismo , Humanos , Mitocôndrias/metabolismo , Ácido Oleico , PPAR alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA