Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3213, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615060

RESUMO

Oxidative stress-induced lipid accumulation is mediated by lipid droplets (LDs) homeostasis, which sequester vulnerable unsaturated triglycerides into LDs to prevent further peroxidation. Here we identify the upregulation of lipopolysaccharide-binding protein (LBP) and its trafficking through LDs as a mechanism for modulating LD homeostasis in response to oxidative stress. Our results suggest that LBP induces lipid accumulation by controlling lipid-redox homeostasis through its lipid-capture activity, sorting unsaturated triglycerides into LDs. N-acetyl-L-cysteine treatment reduces LBP-mediated triglycerides accumulation by phospholipid/triglycerides competition and Peroxiredoxin 4, a redox state sensor of LBP that regulates the shuttle of LBP from LDs. Furthermore, chronic stress upregulates LBP expression, leading to insulin resistance and obesity. Our findings contribute to the understanding of the role of LBP in regulating LD homeostasis and against cellular peroxidative injury. These insights could inform the development of redox-based therapies for alleviating oxidative stress-induced metabolic dysfunction.


Assuntos
Proteínas de Fase Aguda , Gotículas Lipídicas , Glicoproteínas de Membrana , Proteínas de Fase Aguda/metabolismo , Proteínas de Transporte/metabolismo , Homeostase , Gotículas Lipídicas/metabolismo , Lipopolissacarídeos/metabolismo , Glicoproteínas de Membrana/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Triglicerídeos
2.
Adv Sci (Weinh) ; : e2400676, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460179

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with a highly immunosuppressive tumor microenvironment and a typical pattern of disturbances in hepatic lipid metabolism. Long non-coding RNAs are shown to play an important role in the regulation of gene expression, but much remains unknown between tumor microenvironment and lipid metabolism as a bridging molecule. Here, long intergenic nonprotein coding RNA 01116 (LINC01116) acts as this molecular which is frequently upregulated in HCC patients and associated with HCC progression in vitro and in vivo is identified. Mechanistically, LINC01116 stabilizes EWS RNA-binding protein 1 (EWSR1) by preventing RAD18 E3 Ubiquitin Protein Ligase (RAD18) -mediated ubiquitination. The enhanced EWSR1 protein upregulates peroxisome proliferator activated receptor alpha (PPARA) and fatty acid binding protein1 (FABP1) expression, a long-chain fatty acid (LCFA) transporter, and thus cancer cells outcompete T cells for LCFAs, especially linoleic acid, for seeding their own growth, leading to T cell malfunction and HCC malignant progression. In a preclinical animal model, the blockade of LINC01116 leads to enhanced efficacy of anti-PD1 treatment accompanied by increased cytotoxic T cell and decreased exhausted T cell infiltration. Collectively, LINC01116 is an immunometabolic lncRNA and the LINC01116-EWSR1-PPARA-FABP1 axis may be targetable for cancer immunotherapy.

3.
J Am Heart Assoc ; 13(4): e030054, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38348774

RESUMO

BACKGROUND: This study investigated whether gCTRP9 (globular C1q/tumor necrosis factor-related protein-9) could restore high-glucose (HG)-suppressed endothelial progenitor cell (EPC) functions by activating the endothelial nitric oxide synthase (eNOS). METHODS AND RESULTS: EPCs were treated with HG (25 mmol/L) and gCTRP9. Migration, adhesion, and tube formation assays were performed. Adiponectin receptor 1, adiponectin receptor 2, and N-cadherin expression and AMP-activated protein kinase, protein kinase B, and eNOS phosphorylation were measured by Western blotting. eNOS activity was determined using nitrite production measurement. In vivo reendothelialization and EPC homing assays were performed using Evans blue and immunofluorescence in mice. Treatment with gCTRP9 at physiological levels enhanced migration, adhesion, and tube formation of EPCs. gCTRP9 upregulated the phosphorylation of AMP-activated protein kinase, protein kinase B, and eNOS and increased nitrite production in a concentration-dependent manner. Exposure of EPCs to HG-attenuated EPC functions induced cellular senescence and decreased eNOS activity and nitric oxide synthesis; the effects of HG were reversed by gCTRP9. Protein kinase B knockdown inhibited eNOS phosphorylation but did not affect gCTRP9-induced AMP-activated protein kinase phosphorylation. HG impaired N-cadherin expression, but treatment with gCTRP9 restored N-cadherin expression after HG stimulation. gCTRP9 restored HG-impaired EPC functions through both adiponectin receptor 1 and N-cadherin-mediated AMP-activated protein kinase /protein kinase B/eNOS signaling. Nude mice that received EPCs treated with gCTRP9 under HG medium showed a significant enhancement of the reendothelialization capacity compared with those with EPCs incubated under HG conditions. CONCLUSIONS: CTRP9 promotes EPC migration, adhesion, and tube formation and restores these functions under HG conditions through eNOS-mediated signaling mechanisms. Therefore, CTRP9 modulation could eventually be used for vascular healing after injury.


Assuntos
Adiponectina , Células Progenitoras Endoteliais , Glicoproteínas , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Progenitoras Endoteliais/metabolismo , Complemento C1q/metabolismo , Complemento C1q/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Citocinas/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Camundongos Nus , Receptores de Adiponectina/metabolismo , Nitritos , Movimento Celular , Glucose/farmacologia , Glucose/metabolismo , Caderinas/metabolismo , Fatores de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/farmacologia , Óxido Nítrico/metabolismo , Células Cultivadas
4.
Cancer Lett ; 584: 216620, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218456

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent and leading causes of cancer-related mortality worldwide. Long non-coding RNAs (lncRNAs) have been demonstrated to play vital roles in cancer development and progression. The lncRNA PWRN1 (PWRN1), acts as a tumor suppressor factor, which is low expressed in some cancers. However, the molecular mechanisms underlying the effects of PWRN1, especially the regulatory relationship with RNA binding protein in HCC remain largely unknown. In the present study, we demonstrated that PWRN1 was significantly down-regulated in HCC and correlated with better prognosis; furthermore, gain-of-function experiments showed that PWRN1 inhibited the proliferation of HCC cells. We further found that PWRN1 up-regulated pyruvate kinase activity and thus hinders the proliferation of HCC in vitro and in vivo. Mechanistically, pyruvate kinase M2 (PKM2) was bound to it and maintained the high activity state of PKM2, thereby hindering PKM2 from entering the nucleus in the form of low-activity dimers, reducing the expression of c-Myc downstream gene LDHA, leading to a decrease in lactate levels, and inhibiting the growth of tumor cells. In addition, PWRN1 was found to inhibit aerobic glycolysis. Finally, TEPP-46, a pyruvate kinase activator, appeared to inhibit HCC proliferation by maintaining tetramer stability and increasing pyruvate kinase activity. Taken together, our results provide new insights into the biology hindering HCC proliferation and indicate that PWRN1 in combination with PKM2 activators might represent a novel therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glicólise , Neoplasias Hepáticas/patologia , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , RNA Longo não Codificante/metabolismo
5.
J Hepatol ; 78(4): 770-782, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36708811

RESUMO

BACKGROUND & AIMS: The tumour microenvironment (TME) is a crucial mediator of cancer progression and therapeutic outcome. The TME subtype correlates with patient response to immunotherapy in multiple cancers. Most previous studies have focused on the role of different cellular components in the TME associated with immunotherapy efficacy. However, the specific structure of the TME and its role in immunotherapy efficacy remain largely unknown. METHODS: We combined spatial transcriptomics with single-cell RNA-sequencing and multiplexed immunofluorescence to identify the specific spatial structures in the TME that determine the efficacy of immunotherapy in patients with hepatocellular carcinoma (HCC) receiving anti-PD-1 treatment. RESULTS: We identified a tumour immune barrier (TIB) structure, a spatial niche composed of SPP1+ macrophages and cancer-associated fibroblasts (CAFs) located near the tumour boundary, which is associated with the efficacy of immune checkpoint blockade. Furthermore, we dissected ligand‒receptor networks among malignant cells, SPP1+ macrophages, and CAFs; that is, the hypoxic microenvironment promotes SPP1 expression, and SPP1+ macrophages interact with CAFs to stimulate extracellular matrix remodelling and promote TIB structure formation, thereby limiting immune infiltration in the tumour core. Preclinically, the blockade of SPP1 or macrophage-specific deletion of Spp1 in mice led to enhanced efficacy of anti-PD-1 treatment in mouse liver cancer, accompanied by reduced CAF infiltration and increased cytotoxic T-cell infiltration. CONCLUSIONS: We identified that the TIB structure formed by the interaction of SPP1+ macrophages and CAFs is related to immunotherapy efficacy. Therefore, disruption of the TIB structure by blocking SPP1 may be considered a relevant therapeutic approach to enhance the therapeutic effect of immune checkpoint blockade in HCC. IMPACT AND IMPLICATIONS: Only a limited number of patients with hepatocellular carcinoma (HCC) benefit from tumour immunotherapy, which significantly hinders its application. Herein, we used multiomics to identify the spatial structure of the tumour immune barrier (TIB), which is formed by the interaction of SPP1+ macrophages and cancer-associated fibroblasts in the HCC microenvironment. This structure constrains immunotherapy efficacy by limiting immune cell infiltration into malignant regions. Preclinically, we revealed that blocking SPP1 or macrophage-specific deletion of Spp1 in mice could destroy the TIB structure and sensitize HCC cells to immunotherapy. These results provide the first key steps towards finding more effective therapies for HCC and have implications for physicians, scientists, and drug developers in the field of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Microambiente Tumoral , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos
6.
Sci Transl Med ; 14(669): eabo1981, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322628

RESUMO

Immune checkpoint inhibitors (ICIs) have been increasingly used in combination for cancer treatment but are associated with myocarditis. Here, we report that tumor-bearing mice exhibited response to treatment with combinatorial anti-programmed cell death 1 and anti-cytotoxic T lymphocyte antigen-4 antibodies but also presented with cardiovascular toxicities observed clinically with ICI therapy, including myocarditis and arrhythmia. Female mice were preferentially affected with myocarditis compared to male mice, consistent with a previously described genetic model of ICI myocarditis and emerging clinical data. Mechanistically, myocardial tissue from ICI-treated mice, the genetic mouse model, and human heart tissue from affected patients with ICI myocarditis all exhibited down-regulation of MANF (mesencephalic astrocyte-derived neurotrophic factor) and HSPA5 (heat shock 70-kDa protein 5) in the heart; this down-regulation was particularly notable in female mice. ICI myocarditis was amplified by heart-specific genetic deletion of mouse Manf and was attenuated by administration of recombinant MANF protein, suggesting a causal role. Ironically, both MANF and HSPA5 were transcriptionally induced by liganded estrogen receptor ß and inhibited by androgen receptor. However, ICI treatment reduced serum estradiol concentration to a greater extent in female compared to male mice. Treatment with an estrogen receptor ß-specific agonist and androgen depletion therapy attenuated ICI-associated cardiac effects. Together, our data suggest that ICI treatment inhibits estradiol-dependent expression of MANF/HSPA5 in the heart, curtailing the cardiomyocyte response to immune injury. This endocrine-cardiac-immune pathway offers new insights into the mechanisms of sex differences in cardiac disease and may offer treatment strategies for ICI myocarditis.


Assuntos
Miocardite , Humanos , Feminino , Masculino , Camundongos , Animais , Miocardite/complicações , Miocardite/tratamento farmacológico , Inibidores de Checkpoint Imunológico , Receptor beta de Estrogênio/metabolismo , Receptor beta de Estrogênio/uso terapêutico , Miócitos Cardíacos/metabolismo , Estradiol/efeitos adversos , Estradiol/metabolismo , Fatores de Crescimento Neural/efeitos adversos , Fatores de Crescimento Neural/metabolismo
7.
Innovation (Camb) ; 3(1): 100194, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34977836

RESUMO

Immune checkpoint blockade (ICB) therapies exhibit substantial clinical benefit in different cancers, but relatively low response rates in the majority of patients highlight the need to understand mutual relationships among immune features. Here, we reveal overall positive correlations among immune checkpoints and immune cell populations. Clinically, patients benefiting from ICB exhibited increases for both immune stimulatory and inhibitory features after initiation of therapy, suggesting that the activation of the immune microenvironment might serve as the biomarker to predict immune response. As proof-of-concept, we demonstrated that the immune activation score (IS Δ) based on dynamic alteration of interleukins in patient plasma as early as two cycles (4-6 weeks) after starting immunotherapy can accurately predict immunotherapy efficacy. Our results reveal a systematic landscape of associations among immune features and provide a noninvasive, cost-effective, and time-efficient approach based on dynamic profiling of pre- and on-treatment plasma to predict immunotherapy efficacy.

8.
Genome Med ; 13(1): 137, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454586

RESUMO

BACKGROUND: Exercise training is well established as the most effective way to enhance muscle performance and muscle building. The composition of skeletal muscle fiber type affects systemic energy expenditures, and perturbations in metabolic homeostasis contribute to the onset of obesity and other metabolic dysfunctions. Long noncoding RNAs (lncRNAs) have been demonstrated to play critical roles in diverse cellular processes and diseases, including human cancers; however, the functional importance of lncRNAs in muscle performance, energy balance, and obesity remains elusive. We previously reported that the lncRNA H19 regulates the poly-ubiquitination and protein stability of dystrophin (DMD) in muscular dystrophy. METHODS: Here, we identified mouse/human H19-interacting proteins using mouse/human skeletal muscle tissues and liquid chromatography-mass spectrometry (LC-MS). Human induced pluripotent stem-derived skeletal muscle cells (iPSC-SkMC) from a healthy donor and Becker Muscular Dystrophy (BMD) patients were utilized to study DMD post-translational modifications and associated proteins. We identified a gain-of-function (GOF) mutant of H19 and characterized the effects on myoblast differentiation and fusion to myotubes using iPSCs. We then conjugated H19 RNA gain-of-function oligonucleotides (Rgof) with the skeletal muscle enrichment peptide agrin (referred to as AGR-H19-Rgof) and evaluated AGR-H19-Rgof's effects on skeletal muscle performance using wild-type (WT) C57BL/6 J mice and its anti-obesity effects using high-fat diet (HFD)- and leptin deficiency-induced obese mouse models. RESULTS: We demonstrated that both human and mouse H19 associated with DMD and that the H19 GOF exhibited enhanced interaction with DMD compared to WT H19. DMD was found to associate with serine/threonine-protein kinase MRCK alpha (MRCKα) and α-synuclein (SNCA) in iPSC-SkMC derived from BMD patients. Inhibition of MRCKα and SNCA-mediated phosphorylation of DMD antagonized the interaction between H19 and DMD. These signaling events led to improved skeletal muscle cell differentiation and myotube fusion. The administration of AGR-H19-Rgof improved the muscle mass, muscle performance, and base metabolic rate of WT mice. Furthermore, mice treated with AGR-H19-Rgof exhibited resistance to HFD- or leptin deficiency-induced obesity. CONCLUSIONS: Our study suggested the functional importance of the H19 GOF mutant in enhancing muscle performance and anti-obesity effects.


Assuntos
Diferenciação Celular/genética , Mutação com Ganho de Função , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Obesidade/terapia , RNA Longo não Codificante/genética , Animais , Biomarcadores , Proteínas de Transporte , Células Cultivadas , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Distrofina/genética , Distrofina/metabolismo , Imunofluorescência/métodos , Terapia Genética , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Knockout , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Obesidade/diagnóstico , Obesidade/etiologia , Obesidade/metabolismo , Fosforilação , Ligação Proteica
9.
Ann Transl Med ; 8(20): 1318, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33209898

RESUMO

BACKGROUND: Physiological fluid shear stress has been shown to have a beneficial impact on vascular homeostasis. Endothelial progenitor cells (EPCs) make a significant contribution to maintaining endothelial integrity. Therefore, we hypothesised that shear stress-induced endothelium protection plays a role in hydrogen sulphide (H2S) production and up-regulation of cystathionine γ-lyase (CSE) expression in EPCs. METHODS: Human EPC-derived CSE activity was detected by colorimetric assay, and H2S production was evaluated by membrane adsorption method. Cell proliferation, migration, and adhesion were assessed by MTT, Transwell, and endothelial cell-mediated adhesion assays, respectively. Real-time polymerase chain reaction (RT-PCR) was carried out to analyse gene expression. Protein expression was analysed by western blot. RESULTS: Human EPCs were treated with shear stress levels of 5-25 dyn/cm2 for up to 3 h, and 25 dyn/cm2 for up to 24 h. H2S production and CSE mRNA expression in the EPCs were increased by shear stress in a dose-dependent manner in vitro. Likewise, time-dependent shear stress also significantly enhanced CSE protein expression. Compared to static condition, shear stress improved EPCs proliferation, migration and adhesion capacity. Knockdown of CSE expression by small interfering RNA substantially eliminated the shear stress-induced above functions of human EPCs in vitro. CONCLUSIONS: This study gives new insight into the regulatory effect of physiological shear stress on the CSE/H2S system in human EPCs. Our findings may contribute to the development of vascular protective research, although the relevant evidence is admittedly indirect.

10.
Genome Med ; 12(1): 101, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225964

RESUMO

BACKGROUND: Heat shock proteins (HSPs), a representative family of chaperone genes, play crucial roles in malignant progression and are pursued as attractive anti-cancer therapeutic targets. Despite tremendous efforts to develop anti-cancer drugs based on HSPs, no HSP inhibitors have thus far reached the milestone of FDA approval. There remains an unmet need to further understand the functional roles of HSPs in cancer. METHODS: We constructed the network for HSPs across ~ 10,000 tumor samples from The Cancer Genome Atlas (TCGA) and ~ 10,000 normal samples from Genotype-Tissue Expression (GTEx), and compared the network disruption between tumor and normal samples. We then examined the associations between HSPs and cancer hallmarks and validated these associations from multiple independent high-throughput functional screens, including Project Achilles and DRIVE. Finally, we experimentally characterized the dual function effects of HSPs in tumor proliferation and metastasis. RESULTS: We comprehensively analyzed the HSP expression landscape across multiple human cancers and revealed a global disruption of the co-expression network for HSPs. Through analyzing HSP expression alteration and its association with tumor proliferation and metastasis, we revealed dual functional effects of HSPs, in that they can simultaneously influence proliferation and metastasis in opposite directions. We experimentally characterized the dual function of two genes, DNAJC9 and HSPA14, in lung cancer cells. We further demonstrated the generalization of this dual direction of associations between HSPs and cancer hallmarks, suggesting the necessity to more carefully evaluate HSPs as therapeutic targets and develop highly specific HSP inhibitors for cancer intervention. CONCLUSIONS: Our study furnishes a holistic view of functional associations of HSPs with cancer hallmarks to aid the development of HSP inhibitors as well as other drugs in cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Choque Térmico/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Células A549 , Proliferação de Células , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Neoplasias Pulmonares/genética , Metástase Neoplásica , Análise de Sobrevida , Transcriptoma
11.
Pharmacol Ther ; 213: 107591, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32473960

RESUMO

Long noncoding RNAs (lncRNAs) have multiple functions in the regulation of cellular homeostasis. In recent years, numerous studies have shown that tumor-associated lncRNAs play key roles in promoting and maintaining tumor initiation and progression by shaping the tumor microenvironment through changing tumor cell intrinsic properties. Here, we focus on the roles of lncRNAs in cancer immunology. In the first part, we provide an overview of the roles played by lncRNAs and their deregulation in cancer at the cancer cell- and tumor microenvironment-associated immune cell levels. We go on to describe preclinical strategies for targeting lncRNAs, particularly highlighting the effects on tumor microenvironments. We then discuss the possibility of combining lncRNA targeting and tumor immune checkpoint inhibitor antibodies to treat cancer.


Assuntos
Inibidores de Checkpoint Imunológico/administração & dosagem , Neoplasias/genética , RNA Longo não Codificante/genética , Animais , Progressão da Doença , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
12.
RNA Biol ; 17(11): 1625-1627, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32449433

RESUMO

Long noncoding RNAs (lncRNAs) have been found to associate with all major types of malignancies and play important roles in regulating several hallmarks of cancer by interacting with proteins, DNA, and RNA. The possible functions of lncRNAs and their roles in the regulation of tumour growth will be reported and discussed in the present review. In our recent report, based on genetic mice models and a series of systematic analyses, we suggested that lncRNAs also play critical roles in the regulation of antigen presentation in tumour cells and allow tumour cells to escape immune surveillance, which further broadens the scope of understanding lncRNA functions and how they relate to cancer immunotherapy resistance.


Assuntos
Regulação Neoplásica da Expressão Gênica , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , RNA Longo não Codificante/genética , Animais , Apresentação de Antígeno/imunologia , Biomarcadores Tumorais , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Neoplasias/metabolismo
13.
Nat Commun ; 10(1): 4562, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594934

RESUMO

Enhancer RNA (eRNA) is a type of noncoding RNA transcribed from the enhancer. Although critical roles of eRNA in gene transcription control have been increasingly realized, the systemic landscape and potential function of eRNAs in cancer remains largely unexplored. Here, we report the integration of multi-omics and pharmacogenomics data across large-scale patient samples and cancer cell lines. We observe a cancer-/lineage-specificity of eRNAs, which may be largely driven by tissue-specific TFs. eRNAs are involved in multiple cancer signaling pathways through putatively regulating their target genes, including clinically actionable genes and immune checkpoints. They may also affect drug response by within-pathway or cross-pathway means. We characterize the oncogenic potential and therapeutic liability of one eRNA, NET1e, supporting the clinical feasibility of eRNA-targeted therapy. We identify a panel of clinically relevant eRNAs and developed a user-friendly data portal. Our study reveals the transcriptional landscape and clinical utility of eRNAs in cancer.


Assuntos
Antineoplásicos/farmacologia , Elementos Facilitadores Genéticos/genética , Neoplasias/terapia , RNA não Traduzido/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Ensaios de Seleção de Medicamentos Antitumorais , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Genômica , Humanos , Concentração Inibidora 50 , Terapia de Alvo Molecular/métodos , Neoplasias/genética , Proteínas Oncogênicas/genética , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Nat Immunol ; 20(7): 835-851, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31160797

RESUMO

How tumor cells genetically lose antigenicity and evade immune checkpoints remains largely elusive. We report that tissue-specific expression of the human long noncoding RNA LINK-A in mouse mammary glands initiates metastatic mammary gland tumors, which phenotypically resemble human triple-negative breast cancer (TNBC). LINK-A expression facilitated crosstalk between phosphatidylinositol-(3,4,5)-trisphosphate and inhibitory G-protein-coupled receptor (GPCR) pathways, attenuating protein kinase A-mediated phosphorylation of the E3 ubiquitin ligase TRIM71. Consequently, LINK-A expression enhanced K48-polyubiquitination-mediated degradation of the antigen peptide-loading complex (PLC) and intrinsic tumor suppressors Rb and p53. Treatment with LINK-A locked nucleic acids or GPCR antagonists stabilized the PLC components, Rb and p53, and sensitized mammary gland tumors to immune checkpoint blockers. Patients with programmed ccll death protein-1(PD-1) blockade-resistant TNBC exhibited elevated LINK-A levels and downregulated PLC components. Hence we demonstrate lncRNA-dependent downregulation of antigenicity and intrinsic tumor suppression, which provides the basis for developing combinational immunotherapy treatment regimens and early TNBC prevention.


Assuntos
Apresentação de Antígeno/imunologia , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/imunologia , Oncogenes , RNA Longo não Codificante/genética , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Adenoma/genética , Adenoma/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Clin Invest ; 129(3): 1129-1151, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30741721

RESUMO

Epithelial-mesenchymal transition (EMT) contributes significantly to interstitial matrix deposition in diabetic kidney disease (DKD). However, detection of EMT in kidney tissue is impracticable, and anti-EMT therapies have long been hindered. We reported that phosphatase and tensin homolog (PTEN) promoted transforming growth factor beta 1 (TGF-ß), sonic hedgehog (SHH), connective tissue growth factor (CTGF), interleukin 6 (IL-6), and hyperglycemia-induced EMT when PTEN was modified by a MEX3C-catalyzed K27-linked polyubiquitination at lysine 80 (referred to as PTENK27-polyUb). Genetic inhibition of PTENK27-polyUb alleviated Col4a3 knockout-, folic acid-, and streptozotocin-induced (STZ-induced) kidney injury. Serum and urine PTENK27-polyUb concentrations were negatively correlated with glomerular filtration rate (GFR) for diabetic patients. Mechanistically, PTENK27-polyUb facilitated dephosphorylation and protein stabilization of TWIST, SNAI1, and YAP in renal epithelial cells, leading to enhanced EMT. We identified that a small molecule, triptolide, inhibited MEX3C-catalyzed PTENK27-polyUb and EMT of renal epithelial cells. Treatment with triptolide reduced TWIST, SNAI1, and YAP concurrently and improved kidney health in Col4a3 knockout-, folic acid-injured disease models and STZ-induced, BTBR ob/ob diabetic nephropathy models. Hence, we demonstrated the important role of PTENK27-polyUb in DKD and a promising therapeutic strategy that inhibited the progression of DKD.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Transição Epitelial-Mesenquimal , Rim/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Humanos , Rim/patologia , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Proteínas de Sinalização YAP
16.
Cell Res ; 29(4): 286-304, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30631154

RESUMO

Despite the structural conservation of PTEN with dual-specificity phosphatases, there have been no reports regarding the regulatory mechanisms that underlie this potential dual-phosphatase activity. Here, we report that K27-linked polyubiquitination of PTEN at lysines 66 and 80 switches its phosphoinositide/protein tyrosine phosphatase activity to protein serine/threonine phosphatase activity. Mechanistically, high glucose, TGF-ß, CTGF, SHH, and IL-6 induce the expression of a long non-coding RNA, GAEA (Glucose Aroused for EMT Activation), which associates with an RNA-binding E3 ligase, MEX3C, and enhances its enzymatic activity, leading to the K27-linked polyubiquitination of PTEN. The MEX3C-catalyzed PTENK27-polyUb activates its protein serine/threonine phosphatase activity and inhibits its phosphatidylinositol/protein tyrosine phosphatase activity. With this altered enzymatic activity, PTENK27-polyUb dephosphorylates the phosphoserine/threonine residues of TWIST1, SNAI1, and YAP1, leading to accumulation of these master regulators of EMT. Animals with genetic inhibition of PTENK27-polyUb, by a single nucleotide mutation generated using CRISPR/Cas9 (PtenK80R/K80R), exhibit inhibition of EMT markers during mammary gland morphogenesis in pregnancy/lactation and during cutaneous wound healing processes. Our findings illustrate an unexpected paradigm in which the lncRNA-dependent switch in PTEN protein serine/threonine phosphatase activity is important for physiological homeostasis and disease development.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , RNA Longo não Codificante/fisiologia , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Camundongos , Ubiquitinação
17.
Nat Metab ; 1(4): 431-444, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31984309

RESUMO

Tumor hypoxia is a major contributor to resistance to anti-cancer therapies. Given that the results of hypoxia-targeted therapy trials have been disappointing, a more personalized approach may be needed. Here we characterize multi-OMIC molecular features associated with tumor hypoxia and identify molecular alterations that correlate with both drug-resistant and drug-sensitive responses to anti-cancer drugs. Based on a well-established hypoxia gene expression signature, we classify about 10,000 tumor samples into hypoxia score-high and score-low groups across different cancer types from The Cancer Genome Atlas and demonstrate their prognostic associations. We then identify various types of molecular features associated with hypoxia status that correlate with drug resistance but, in some cases, also with drug sensitivity, contrasting the conventional view that hypoxia confers drug resistance. We further show that 110 out of 121 (90.9%) clinically actionable genes can be affected by hypoxia status and experimentally validate the predicted effects of hypoxia on the response to several drugs in cultured cells. Our study provides a comprehensive molecular-level understanding of tumor hypoxia and may have practical implications for clinical cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Hipóxia Tumoral/genética , Feminino , Humanos , Masculino , Neoplasias/genética , Neoplasias/patologia , Transcriptoma
18.
Cancer Res ; 78(16): 4524-4532, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29967256

RESUMO

Long noncoding RNA (lncRNA) is yet to be linked to cancer metabolism. Here, we report that upregulation of the lncRNA LINC00538 (YIYA) promotes glycolysis, cell proliferation, and tumor growth in breast cancer. YIYA is associated with the cytosolic cyclin-dependent kinase CDK6 and regulated CDK6-dependent phosphorylation of the fructose bisphosphatase PFK2 (PFKFB3) in a cell-cycle-independent manner. In breast cancer cells, these events promoted catalysis of glucose 6-phosphate to fructose-2,6-bisphosphate/fructose-1,6-bisphosphate. CRISPR/Cas9-mediated deletion of YIYA or CDK6 silencing impaired glycolysis and tumor growth in vivo In clinical specimens of breast cancer, YIYA was expressed in approximately 40% of cases where it correlated with CDK6 expression and unfavorable survival outcomes. Our results define a functional role for lncRNA in metabolic reprogramming in cancer, with potential clinical implications for its therapeutic targeting.Significance: These findings offer a first glimpse into how a long-coding RNA influences cancer metabolism to drive tumor growth. Cancer Res; 78(16); 4524-32. ©2018 AACR.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/genética , RNA Longo não Codificante/genética , Neoplasias da Mama/patologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Quinase 6 Dependente de Ciclina/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Glucose/metabolismo , Glicólise/genética , Humanos , Fosforilação
19.
Cancer Lett ; 430: 179-192, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-29803789

RESUMO

As a class of endogenous noncoding RNAs, circular RNAs (circRNAs) have been recently identified to regulate tumourigenesis and progression in multiple malignancies. However, the expression profiles and function of circRNAs in breast cancer metastasis are largely unknown. Here, we determined that the expression of a novel circRNA, which we named circIRAK3, was increased in metastatic breast cancer (BC) cells and predictive of BC recurrence. Gain-of-function and loss-of-function studies in BC cells demonstrated that circIRAK3 promoted cell migration, invasion and metastasis in vitro and in vivo but did not affect cell proliferation, colony formation or cell cycle progression. Using circIRAK3 in vivo precipitation and luciferase reporter assays, we identified miR-3607 as a circIRAK3-associated miRNA. Furthermore, RNA sequencing and bioinformatics analysis showed that forkhead box C1 (FOXC1), the target of miR-3607, was downregulated in circIRAK3-silenced cells and mediated circIRAK3-induced BC cell migration. Intriguingly, FOXC1 could, in turn, bind to the IRAK3 promoter, triggering a positive-feedback loop that perpetuated the circIRAK3/miR-3607/FOXC1 signaling axis. Collectively, our findings indicated that circIRAK3 may exert regulatory roles in BC metastasis and may be a potential target for metastatic BC therapy.


Assuntos
Neoplasias da Mama/genética , Fatores de Transcrição Forkhead/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , MicroRNAs/metabolismo , Recidiva Local de Neoplasia/genética , RNA/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Regulação para Baixo , Retroalimentação Fisiológica , Feminino , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Recidiva Local de Neoplasia/patologia , Regiões Promotoras Genéticas , RNA/genética , RNA Circular , RNA Interferente Pequeno/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cell Syst ; 6(3): 314-328.e2, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29525205

RESUMO

Cancer chronotherapy, treatment at specific times during circadian rhythms, endeavors to optimize anti-tumor effects and to lower toxicity. However, comprehensive characterization of clock genes and their clinical relevance in cancer is lacking. We systematically characterized the alterations of clock genes across 32 cancer types by analyzing data from The Cancer Genome Atlas, Cancer Therapeutics Response Portal, and The Genomics of Drug Sensitivity in Cancer databases. Expression alterations of clock genes are associated with key oncogenic pathways, patient survival, tumor stage, and subtype in multiple cancer types. Correlations between expression of clock genes and of other genes in the genome were altered in cancerous versus normal tissues. We identified interactions between clock genes and clinically actionable genes by analyzing co-expression, protein-protein interaction, and chromatin immunoprecipitation sequencing data and also found that clock gene expression is correlated to anti-cancer drug sensitivity in cancer cell lines. Our study provides a comprehensive analysis of the circadian clock across different cancer types and highlights potential clinical utility of cancer chronotherapy.


Assuntos
Cronoterapia/métodos , Relógios Circadianos/genética , Neoplasias/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano , Genômica , Humanos , Farmacogenética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA