Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Med ; 5(4): 348-367.e7, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38521069

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) cancer cells specifically produce abnormal oncogenic collagen to bind with integrin α3ß1 receptor and activate the downstream focal adhesion kinase (FAK), protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) signaling pathway. Collectively, this promotes immunosuppression and tumor proliferation and restricts the response rate of clinical cancer immunotherapies. METHODS: Here, by leveraging the hypoxia tropism and excellent motility of the probiotic Escherichia coli strain Nissle 1917 (ECN), we developed nanodrug-bacteria conjugates to penetrate the extracellular matrix (ECM) and shuttle the surface-conjugated protein cages composed of collagenases and anti-programmed death-ligand 1 (PD-L1) antibodies to PDAC tumor parenchyma. FINDINGS: We found the oncogenic collagen expression in human pancreatic cancer patients and demonstrated its interaction with integrin α3ß1. We proved that reactive oxygen species (ROS) in the microenvironment of PDAC triggered collagenase release to degrade oncogenic collagen and block integrin α3ß1-FAK signaling pathway, thus overcoming the immunosuppression and synergizing with anti-PD-L1 immunotherapy. CONCLUSIONS: Collectively, our study highlights the significance of oncogenic collagen in PDAC immunotherapy, and consequently, we developed a therapeutic strategy that can deplete oncogenic collagen to synergize with immune checkpoint blockade for enhanced PDAC treatment efficacy. FUNDING: This work was supported by the University of Wisconsin Carbone Cancer Center Research Collaborative and Pancreas Cancer Research Task Force, UWCCC Transdisciplinary Cancer Immunology-Immunotherapy Pilot Project, and the start-up package from the University of Wisconsin-Madison (to Q.H.).


Assuntos
Carcinoma Ductal Pancreático , Nanopartículas , Neoplasias Pancreáticas , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Integrina alfa3beta1 , Projetos Piloto , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Colágeno , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Microambiente Tumoral
2.
AAPS J ; 25(5): 80, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589825

RESUMO

Macrophages, as one of the most abundant tumor-infiltrating cells, play an important role in tumor development and metastasis. The frequency and polarization of tumor-associated macrophages (TAMs) correlate with disease progression, tumor metastasis, and resistance to various treatments. Pro-inflammatory M1 macrophages hold the potential to engulf tumor cells. In contrast, anti-inflammatory M2 macrophages, which are predominantly present in tumors, potentiate tumor progression and immune escape. Targeting macrophages to modulate the tumor immune microenvironment can ameliorate the tumor-associated immunosuppression and elicit an anti-tumor immune response. Strategies to repolarize TAMs, deplete TAMs, and block inhibitory signaling hold great potential in tumor therapy. Besides, biomimetic carriers based on macrophages have been extensively explored to prolong circulation, enhance tumor-targeted delivery, and reduce the immunogenicity of therapeutics to augment therapeutic efficacy. Moreover, the genetic engineering of macrophages with chimeric antigen receptor (CAR) allows them to recognize tumor antigens and perform tumor cell-specific phagocytosis. These strategies will expand the toolkit for treating tumors, especially for solid tumors, drug-resistant tumors, and metastatic tumors. Herein, we introduce the role of macrophages in tumor progression, summarize the recent advances in macrophage-centered anticancer therapy, and discuss their challenges as well as future applications. Graphical abstract.


Assuntos
Biomimética , Macrófagos , Humanos , Progressão da Doença , Engenharia Genética
3.
J Am Chem Soc ; 145(17): 9815-9824, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37094179

RESUMO

Exploring the response of malignant cells to intracellular metabolic stress is critical for understanding pathologic processes and developing anticancer therapies. Herein, we developed ferritin-targeting proteolysis targeting chimeras (PROTACs) to establish the iron excess stress inside cancer cells and investigated subsequent cellular behaviors. We conjugated oleic acid that binds to the ferritin dimer to the ligand of von Hippel-Lindau (VHL) E3 ligase through an alkyl linker. The screened chimera, DeFer-2, degraded ferritin and then rapidly elevated the free iron content, thereby initiating the caspase 3-GSDME-mediated pyroptosis in cancer cells rather than typical ferroptosis that is always associated with iron ion overload. According to its structural and physicochemical characteristics, DeFer-2 was loaded into a tailored albumin-based nano-formulation, which substantially inhibited tumor growth and prolonged the survival time of mice bearing B16F10 subcutaneous tumors with negligible adverse effects. This study developed a ferritin-targeting PROTAC for iron overload stress, revealed iron metabolic dysregulation-mediated pyroptosis, and provided a PROTAC-based pyroptosis inducer for anticancer treatment.


Assuntos
Ferritinas , Proteína Supressora de Tumor Von Hippel-Lindau , Animais , Camundongos , Proteína Supressora de Tumor Von Hippel-Lindau/química , Ferritinas/metabolismo , Piroptose , Proteólise , Ferro/metabolismo
4.
Sci Adv ; 9(13): eadf6854, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989364

RESUMO

Immune checkpoint inhibitors (ICIs) can reinvigorate T cells to eradicate tumor cells, showing great potential in combating various types of tumors. We propose a delivery strategy to enhance tumor-selective ICI accumulation, which leverages the responsiveness of platelets and platelet-derivatives to coagulation cascade signals. A fused protein tTF-RGD targets tumor angiogenic blood vessel endothelial cells and initiates the coagulation locoregionally at the tumor site, forming a "cellular hive" to recruit anti-PD-1 antibody (aPD-1)-conjugated platelets to the tumor site and subsequently activating platelets to release aPD-1 antibody to reactivate T cells for improved immunotherapy. Moreover, on a patient-derived xenograft breast cancer model, the platelet membrane-coated nanoparticles can also respond to the coagulation signals initiated by tTF-RGD, thus enhancing the accumulation and antitumor efficacy of the loaded chemotherapeutics. Our study illustrates a versatile platform technology to enhance the local accumulation of ICIs and chemodrugs by taking advantage of the responsiveness of platelets and platelet derivatives to thrombosis.


Assuntos
Neoplasias , Trombose , Animais , Humanos , Modelos Animais de Doenças , Células Endoteliais , Imunoterapia , Neoplasias/tratamento farmacológico , Oligopeptídeos , Trombose/tratamento farmacológico , Trombose/etiologia , Receptor de Morte Celular Programada 1/imunologia
5.
Adv Mater ; 35(15): e2210440, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36656162

RESUMO

Immunotherapy has achieved revolutionary success in clinics, but it remains challenging for treating hepatocellular carcinoma (HCC) characterized by high vascularization. Here, it is reported that metal-organic framework-801 (MOF-801) can be employed as a stimulator of interferon genes (STING) through Toll-like receptor 4 (TLR4) not just as a drug delivery carrier. Notably, cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) and 5, 6-dimethylxanthenone-4-acetic acid (DMXAA) STING agonist with vascular disrupting function coordinates with MOF-801 to self-assemble into a nanoparticle (MOF-CpG-DMXAA) that effectively delivers CpG ODNs and DMXAA to cells for synergistically improving the tumor microenvironment by reprogramming tumor-associated macrophages (TAMs), promoting dendritic cells (DCs) maturation, as well as destroying tumor blood vessels. In HCC-bearing mouse models, it is demonstrated that MOF-CpG-DMXAA triggers systemic immune activation and stimulates robust tumoricidal immunity, resulting in a superior immunotherapeutic efficiency in orthotopic and recurrent HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Estruturas Metalorgânicas , Camundongos , Animais , Estruturas Metalorgânicas/farmacologia , Proteínas de Membrana , Carcinoma Hepatocelular/terapia , Imunidade Inata , DNA , Microambiente Tumoral
6.
Chem Soc Rev ; 52(3): 1068-1102, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36633324

RESUMO

Cell-based therapy holds great potential to address unmet medical needs and revolutionize the healthcare industry, as demonstrated by several therapeutics such as CAR-T cell therapy and stem cell transplantation that have achieved great success clinically. Nevertheless, natural cells are often restricted by their unsatisfactory in vivo trafficking and lack of therapeutic payloads. Chemical engineering offers a cost-effective, easy-to-implement engineering tool that allows for strengthening the inherent favorable features of cells and confers them new functionalities. Moreover, in accordance with the trend of precision medicine, leveraging chemical engineering tools to tailor cells to accommodate patients individual needs has become important for the development of cell-based treatment modalities. This review presents a comprehensive summary of the currently available chemically engineered tools, introduces their application in advanced diagnosis and precision therapy, and discusses the current challenges and future opportunities.


Assuntos
Engenharia Celular , Medicina de Precisão , Humanos
7.
Nat Commun ; 13(1): 6321, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280674

RESUMO

Pore-forming Gasdermin protein-induced pyroptosis in tumor cells promotes anti-tumor immune response through the release of pro-inflammatory cytokines and immunogenic substances after cell rupture. However, endosomal sorting complexes required for transport (ESCRT) III-mediated cell membrane repair significantly diminishes the tumor cell pyroptosis by repairing and subsequently removing gasdermin pores. Here, we show that blocking calcium influx-triggered ESCRT III-dependent membrane repair through a biodegradable nanoparticle-mediated sustained release of calcium chelator (EI-NP) strongly enhances the intracellularly delivered GSDMD-induced tumor pyroptosis via a bacteria-based delivery system (VNP-GD). An injectable hydrogel and a lyophilized hydrogel-based cell patch are developed for peritumoral administration for treating primary and metastatic tumors, and implantation for treating inoperable tumors respectively. The hydrogels, functioning as the local therapeutic reservoirs, can sustainedly release VNP-GD to effectively trigger tumor pyroptosis and EI-NP to prevent the ESCRT III-induced plasma membrane repair to boost the pyroptosis effects, working synergistically to augment the anti-tumor immune response.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Piroptose , Proteínas de Ligação a Fosfato/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Cálcio/metabolismo , Quelantes de Cálcio/metabolismo , Quelantes de Cálcio/farmacologia , Preparações de Ação Retardada/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Membrana Celular/metabolismo , Imunidade , Citocinas/metabolismo , Hidrogéis/metabolismo
8.
Adv Funct Mater ; 32(37)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36304724

RESUMO

Despite the rapid development of immunotherapy, low response rates, poor therapeutic outcomes and severe side effects still limit their implementation, making the augmentation of immunotherapy an important goal for current research. DNA, which has principally been recognized for its functions of encoding genetic information, has recently attracted research interest due to its emerging role in immune modulation. Inspired by the intrinsic DNA-sensing signaling that triggers the host defense in response to foreign DNA, DNA or nucleic acid-based immune stimulators have been used in the prevention and treatment of various diseases. Besides that, DNA vaccines allow the synthesis of target proteins in host cells, subsequently inducing recognition of these antigens to provoke immune responses. On this basis, researchers have designed numerous vehicles for DNA and nucleic acid delivery to regulate immune systems. Additionally, DNA nanostructures have also been implemented as vaccine delivery systems to elicit strong immune responses against pathogens and diseased cells. This review will introduce the mechanism of harnessing DNA-mediated immunity for the prevention and treatment of diseases, summarize recent progress, and envisage their future applications and challenges.

9.
Expert Opin Drug Deliv ; 19(10): 1337-1349, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35949105

RESUMO

INTRODUCTION: Cancer immunotherapies have created a new generation of therapeutics to employ the immune system to attack cancer cells. However, these therapies are typically based on biologics that are nonspecific and often exhibit poor tumor penetration and dose-limiting toxicities. Nanocarriers allow the opportunity to overcome these barriers as they have the capabilities to direct immunomodulating drugs to tumor sites via passive and active targeting, decreasing potential adverse effects from nonspecific targeting. In addition, nanocarriers can be multifunctionalized to deliver multiple cancer therapeutics in a single drug platform, offering synergistic potential from co-delivery approaches. AREAS COVERED: This review focuses on the delivery of cancer therapeutics using emerging nanocarriers to achieve synergistic results via co-delivery of immune-modulating components (i.e. chemotherapeutics, monoclonal antibodies, and genes). EXPERT OPINION: Nanocarrier-mediated delivery of combinatorial immunotherapy creates the opportunity to fine-tune drug release while achieving superior tumor targeting and tumor cell death, compared to free drug counterparts. As these nanoplatforms are constantly improved upon, combinatorial immunotherapy will afford the greatest benefit to treat an array of tumor types while inhibiting cancer evasion pathways.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia
10.
Sci Transl Med ; 14(656): eabn1128, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35921473

RESUMO

Glioblastoma multiforme (GBM) remains incurable despite aggressive implementation of multimodal treatments after surgical debulking. Almost all patients with GBM relapse within a narrow margin around the initial resected lesion due to postsurgery residual glioma stem cells (GSCs). Tracking and eradicating postsurgery residual GSCs is critical for preventing postoperative relapse of this devastating disease, yet effective strategies remain elusive. Here, we report a cavity-injectable nanoporter-hydrogel superstructure that creates GSC-specific chimeric antigen receptor (CAR) macrophages/microglia (MΦs) surrounding the cavity to prevent GBM relapse. Specifically, we demonstrate that the CAR gene-laden nanoporter in the hydrogel can introduce GSC-targeted CAR genes into MΦ nuclei after intracavity delivery to generate CAR-MΦs in mouse models of GBM. These CAR-MΦs were able to seek and engulf GSCs and clear residual GSCs by stimulating an adaptive antitumor immune response in the tumor microenvironment and prevented postoperative glioma relapse by inducing long-term antitumor immunity in mice. In an orthotopic patient-derived glioblastoma humanized mouse model, the combined treatment with nanoporter-hydrogel superstructure and CD47 antibody increased the frequency of positive immune responding cells and suppressed the negative immune regulating cells, conferring a robust tumoricidal immunity surrounding the postsurgical cavity and inhibiting postoperative glioblastoma relapse. Therefore, our work establishes a locoregional treatment strategy for priming cancer stem cell-specific tumoricidal immunity with broad application in patients suffering from recurrent malignancies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Receptores de Antígenos Quiméricos , Animais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Glioblastoma/genética , Glioma/patologia , Glioma/terapia , Hidrogéis , Macrófagos/patologia , Camundongos , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Mater Chem B ; 10(37): 7222-7238, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35612089

RESUMO

With the outstanding achievement of chimeric antigen receptor (CAR)-T cell therapy in the clinic, cell-based medicines have attracted considerable attention for biomedical applications and thus generated encouraging progress. As the basic construction unit of organisms, cells harbor low immunogenicity, desirable compatibility, and a strong capability of crossing various biological barriers. However, there is still a long way to go to fix significant bottlenecks for their clinical translation, such as facile preparation, strict stability requirements, scale-up manufacturing, off-target toxicity, and affordability. The rapid development of biotechnology and engineering approaches in materials sciences has provided an ideal platform to assist cell-based therapeutics for wide application in disease treatments by overcoming these issues. Herein, we survey the most recent advances of various cells as bioactive ingredients and outline the roles of biomaterials in developing cell-based therapeutics. Besides, a perspective of cell therapies is offered with a particular focus on biomaterial-involved development of cell-based biopharmaceuticals.


Assuntos
Produtos Biológicos , Neoplasias , Receptores de Antígenos Quiméricos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T , Linfócitos T
12.
Nat Commun ; 13(1): 1845, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387972

RESUMO

Immunosuppressive cells residing in the tumor microenvironment, especially tumor associated macrophages (TAMs), hinder the infiltration and activation of T cells, limiting the anti-cancer outcomes of immune checkpoint blockade. Here, we report a biocompatible alginate-based hydrogel loaded with Pexidartinib (PLX)-encapsulated nanoparticles that gradually release PLX at the tumor site to block colony-stimulating factor 1 receptors (CSF1R) for depleting TAMs. The controlled TAM depletion creates a favorable milieu for facilitating local and systemic delivery of anti-programmed cell death protein 1 (aPD-1) antibody-conjugated platelets to inhibit post-surgery tumor recurrence. The tumor immunosuppressive microenvironment is also reprogrammed by TAM elimination, further promoting the infiltration of T cells into tumor tissues. Moreover, the inflammatory environment after surgery could trigger the activation of platelets to facilitate the release of aPD-1 accompanied with platelet-derived microparticles binding to PD-1 receptors for re-activating T cells. All these results collectively indicate that the immunotherapeutic efficacy against tumor recurrence of both local and systemic administration of aPD-1 antibody-conjugated platelets could be strengthened by local depletion of TAMs through the hydrogel reservoir.


Assuntos
Plaquetas , Micropartículas Derivadas de Células , Humanos , Hidrogéis , Imunoterapia/métodos , Recidiva Local de Neoplasia , Microambiente Tumoral , Macrófagos Associados a Tumor
13.
Natl Sci Rev ; 9(3): nwab172, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35265340

RESUMO

Chimeric antigen receptor T cell (CAR T) therapy was a milestone in the treatment of relapsed and refractory B cell malignancies. However, beneficial effects of CAR T cells have not been obtained in solid tumors yet. Herein, we implement a porous microneedle patch that accommodates CAR T cells and allows in situ penetration-mediated seeding of CAR T cells when implanted in the tumor bed or in the post-surgical resection cavity. CAR T cells loaded in the pores of the microneedle tips were readily escorted to the tumor in an evenly scattered manner without losing their activity. Such microneedle-mediated local delivery enhanced infiltration and immunostimulation of CAR T cells as compared to direct intratumoral injection. This tailorable patch offers a transformative platform for scattered seeding of living cells for treating a variety of tumors.

14.
Exploration (Beijing) ; 2(3): 20210106, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37323702

RESUMO

Immunotherapy strategies that use cell-based delivery systems have sparked much interest in the treatment of malignancies, owing to their high biocompatibility, excellent tumor targeting capability, and unique biofunctionalities in the tumor growth process. A variety of design principles for cell-based immunotherapy, including cell surface decoration, cell membrane coating, cell encapsulation, genetically engineered cell, and cell-derived exosomes, give cancer immunotherapy great potential to improve therapeutic efficacy and reduce adverse effects. However, the treatment efficacy of cell-based delivery methods for immunotherapy is still limited, and practical uses are hampered due to complex physiological and immunological obstacles, such as physical barriers to immune infiltration, immunosuppressive tumor microenvironment, upregulation of immunosuppressive pathways, and metabolic restriction. In this review, we present an overview of the design principles of cell-based delivery systems in cancer immunotherapy to maximize the therapeutic impact, along with anatomical, metabolic, and immunological impediments in using cell-based immunotherapy to treat cancer. Following that, a summary of novel delivery strategies that have been created to overcome these obstacles to cell-based immunotherapeutic delivery systems is provided. Also, the obstacles and prospects of next-step development of cell-based delivery systems for cancer immunotherapy are concluded in the end.

15.
Adv Mater ; 33(38): e2102580, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34347325

RESUMO

Bacteria are one of the main groups of organisms, which dynamically and closely participate in human health and disease development. With the integration of chemical biotechnology, bacteria have been utilized as an emerging delivery system for various biomedical applications. Given the unique features of bacteria such as their intrinsic biocompatibility and motility, bacteria-based delivery systems have drawn wide interest in the diagnosis and treatment of various diseases, including cancer, infectious diseases, kidney failure, and hyperammonemia. Notably, at the interface of chemical biotechnology and bacteria, many research opportunities have been initiated, opening a promising frontier in biomedical application. Herein, the current synergy of chemical biotechnology and bacteria, the design principles for bacteria-based delivery systems, the microbial modulation, and the clinical translation are reviewed, with a special focus on the emerging advances in diagnosis and therapy.


Assuntos
Biotecnologia , Sistemas de Liberação de Medicamentos , Bactérias
16.
Nat Biomed Eng ; 5(9): 1038-1047, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33903744

RESUMO

The immunosuppressive microenvironment of solid tumours reduces the antitumour activity of chimeric antigen receptor T cells (CAR-T cells). Here, we show that the release-through the implantation of a hyaluronic acid hydrogel-of CAR-T cells targeting the human chondroitin sulfate proteoglycan 4, polymer nanoparticles encapsulating the cytokine interleukin-15 and platelets conjugated with the checkpoint inhibitor programmed death-ligand 1 into the tumour cavity of mice with a resected subcutaneous melanoma tumour inhibits the local recurrence of the tumour as well as the growth of distant tumours, through the abscopal effect. The hydrogel, which functions as a reservoir, facilitates the enhanced distribution of the CAR-T cells within the surgical bed, and the inflammatory microenvironment triggers platelet activation and the subsequent release of platelet-derived microparticles. The post-surgery local delivery of combination immunotherapy through a biocompatible hydrogel reservoir could represent a translational route for preventing the recurrence of cancers with resectable tumours.


Assuntos
Micropartículas Derivadas de Células , Imunoterapia Adotiva , Animais , Anticorpos Monoclonais Humanizados , Plaquetas , Hidrogéis , Camundongos , Recidiva Local de Neoplasia/prevenção & controle , Linfócitos T , Microambiente Tumoral
17.
Sci Transl Med ; 12(556)2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32801144

RESUMO

Activation of the stimulator of interferon gene (STING) pathway within the tumor microenvironment has been shown to generate a strong antitumor response. Although local administration of STING agonists has promise for cancer immunotherapy, the dosing regimen needed to achieve efficacy requires frequent intratumoral injections over months. Frequent dosing for cancer treatment is associated with poor patient adherence, with as high as 48% of patients failing to comply. Multiple intratumoral injections also disrupt the tumor microenvironment and vascular networks and therefore increase the risk of metastasis. Here, we developed microfabricated polylactic-co-glycolic acid (PLGA) particles that remain at the site of injection and release encapsulated STING agonist as a programmable sequence of pulses at predetermined time points that mimic multiple injections over days to weeks. A single intratumoral injection of STING agonist-loaded microparticles triggered potent local and systemic antitumor immune responses, inhibited tumor growth, and prolonged survival as effectively as multiple soluble doses, but with reduced metastasis in several mouse tumor models. STING agonist-loaded microparticles improved the response to immune checkpoint blockade therapy and substantially decreased the tumor recurrence rate from 100 to 25% in mouse models of melanoma when administered during surgical resection. In addition, we demonstrated the therapeutic efficacy of STING microparticles on an orthotopic pancreatic cancer model in mice that does not allow multiple intratumoral injections. These findings could directly benefit current STING agonist therapy by decreasing the number of injections, reducing risk of metastasis, and expanding its applicability to hard-to-reach cancers.


Assuntos
Glicóis , Proteínas de Membrana , Animais , Humanos , Imunoterapia , Camundongos , Recidiva Local de Neoplasia , Microambiente Tumoral
18.
Adv Mater ; 32(1): e1903878, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31686433

RESUMO

Chirality is ubiquitous in nature and hard-wired into every biological system. Despite the prevalence of chirality in biological systems, controlling biomaterial chirality to influence interactions with cells has only recently been explored. Chiral-engineered supraparticles (SPs) that interact differentially with cells and proteins depending on their handedness are presented. SPs coordinated with d-chirality demonstrate greater than threefold enhanced cell membrane penetration in breast, cervical, and multiple myeloma cancer cells. Quartz crystal microbalance with dissipation and isothermal titration calorimetry measurements reveal the mechanism of these chiral-specific interactions. Thermodynamically, d-SPs show more stable adhesion to lipid layers composed of phospholipids and cholesterol compared to l-SPs. In vivo, d-SPs exhibit superior stability and longer biological half-lives likely due to opposite chirality and thus protection from endogenous proteins including proteases. This work shows that incorporating d-chirality into nanosystems enhances uptake by cancer cells and prolonged in vivo stability in circulation, providing support for the importance of chirality in biomaterials. Thus, chiral nanosystems may have the potential to provide a new level of control for drug delivery systems, tumor detection markers, biosensors, and other biomaterial-based devices.


Assuntos
Materiais Biocompatíveis/química , Nanomedicina , Materiais Biocompatíveis/farmacologia , Técnicas Biossensoriais/métodos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisteína/química , Meia-Vida , Humanos , Bicamadas Lipídicas/metabolismo , Lipídeos/química , Microscopia Confocal , Polietilenoglicóis/química , Técnicas de Microbalança de Cristal de Quartzo , Estereoisomerismo , Termodinâmica
19.
Adv Mater ; 31(23): e1900192, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30916367

RESUMO

Chimeric antigen receptor (CAR)-redirected T lymphocytes (CAR T cells) show modest therapeutic efficacy in solid tumors. The desmoplastic structure of the tumor and the immunosuppressive tumor microenvironment usually account for the reduced efficacy of CAR T cells in solid tumors. Mild hyperthermia of the tumor reduces its compact structure and interstitial fluid pressure, increases blood perfusion, releases antigens, and promotes the recruitment of endogenous immune cells. Therefore, the combination of mild hyperthermia with the adoptive transfer of CAR T cells can potentially increase the therapeutic index of these cells in solid tumors. It is found that the chondroitin sulfate proteoglycan-4 (CSPG4)-specific CAR T cells infused in Nod scid gamma mice engrafted with the human melanoma WM115 cell line have superior antitumor activity after photothermal ablation of the tumor. The findings suggest that photothermal therapy facilitates the accumulation and effector function of CAR T cells within solid tumors.


Assuntos
Antígenos/metabolismo , Hipertermia Induzida , Imunoterapia Adotiva/métodos , Fototerapia/métodos , Proteoglicanas/metabolismo , Linfócitos T/metabolismo , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Terapia Combinada , Feminino , Xenoenxertos , Humanos , Verde de Indocianina/química , Melanoma/patologia , Melanoma/terapia , Proteínas de Membrana/metabolismo , Camundongos SCID , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Linfócitos T/transplante
20.
Adv Mater ; 31(17): e1806957, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30856290

RESUMO

Patients with advanced melanoma that is of low tumor-associated antigen (TAA) expression often respond poorly to PD-1/PD-L1 blockade therapy. Epigenetic modulators, such as hypomethylation agents (HMAs), can enhance the antitumor immune response by inducing TAA expression. Here, a dual bioresponsive gel depot that can respond to the acidic pH and reactive oxygen species (ROS) within the tumor microenvironment (TME) for codelivery of anti-PD1 antibody (aPD1) and Zebularine (Zeb), an HMA, is engineered. aPD1 is first loaded into pH-sensitive calcium carbonate nanoparticles (CaCO3 NPs), which are then encapsulated in the ROS-responsive hydrogel together with Zeb (Zeb-aPD1-NPs-Gel). It is demonstrated that this combination therapy increases the immunogenicity of cancer cells, and also plays roles in reversing immunosuppressive TME, which contributes to inhibiting the tumor growth and prolonging the survival time of B16F10-melanoma-bearing mice.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/síntese química , Citidina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Imunossupressores/química , Melanoma/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados , Antineoplásicos/farmacologia , Carbonato de Cálcio/química , Linhagem Celular Tumoral , Citidina/farmacologia , Liberação Controlada de Fármacos , Quimioterapia Combinada/métodos , Humanos , Concentração de Íons de Hidrogênio , Imunossupressores/farmacologia , Imunoterapia/métodos , Nanopartículas/química , Receptor de Morte Celular Programada 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA