Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(9): e0257191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34499677

RESUMO

COVID-19 in humans is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that belongs to the beta family of coronaviruses. SARS-CoV-2 causes severe respiratory illness in 10-15% of infected individuals and mortality in 2-3%. Vaccines are urgently needed to prevent infection and to contain viral spread. Although several mRNA- and adenovirus-based vaccines are highly effective, their dependence on the "cold chain" transportation makes global vaccination a difficult task. In this context, a stable lyophilized vaccine may present certain advantages. Accordingly, establishing additional vaccine platforms remains vital to tackle SARS-CoV-2 and any future variants that may arise. Vaccinia virus (VACV) has been used to eradicate smallpox disease, and several attenuated viral strains with enhanced safety for human applications have been developed. We have generated two candidate SARS-CoV-2 vaccines based on two vaccinia viral strains, MVA and v-NY, that express full-length SARS-CoV-2 spike protein. Whereas MVA is growth-restricted in mammalian cells, the v-NY strain is replication-competent. We demonstrate that both candidate recombinant vaccines induce high titers of neutralizing antibodies in C57BL/6 mice vaccinated according to prime-boost regimens. Furthermore, our vaccination regimens generated TH1-biased immune responses in mice. Most importantly, prime-boost vaccination of a Syrian hamster infection model with MVA-S and v-NY-S protected the hamsters against SARS-CoV-2 infection, supporting that these two vaccines are promising candidates for future development. Finally, our vaccination regimens generated neutralizing antibodies that partially cross-neutralized SARS-CoV-2 variants of concern.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/imunologia , Vaccinia virus/genética , Animais , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/imunologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Feminino , Imunização Secundária , Pulmão/patologia , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
2.
Hum Gene Ther ; 32(1-2): 96-112, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32998579

RESUMO

Adeno-associated virus (AAV) vectors such as AAV6, which shows tropism for primary human CD4+ T cells in vitro, are being explored for delivery of anti-HIV therapeutic modalities in vivo. However, pre-existing immunity and sequestration in nontarget organs can significantly hinder their performance. To overcome these challenges, we investigated whether immunosuppression would allow gene delivery by AAV6 or targeted AAV6 derivatives in seropositive rhesus macaques. Animals were immune suppressed with rapamycin before intravenous (IV) or subcutaneous (SC) delivery of AAV, and we monitored vector biodistribution, gene transfer, and safety. Macaques received phosphate-buffered saline, AAV6 alone, or an equal dose of AAV6 and an AAV6-55.2 vector retargeted to CD4 through a direct ankyrin repeat protein (DARPin). AAV6 and AAV6-55.2 vector genomes were found in peripheral blood mononuclear cells and most organs up to 28 days postadministration, with the highest levels seen in liver, spleen, lymph nodes (LNs), and muscle, suggesting that retargeting did not prevent vector sequestration. Despite vector genome detection, gene expression from AAV6-55.2 was not detected in any tissue. SC injection of AAV6 facilitated efficient gene expression in muscle adjacent to the injection site, plus low-level gene expression in spleen, LNs, and liver, whereas gene expression following IV injection of AAV6 was predominantly seen in the spleen. AAV vectors were well tolerated, although elevated liver enzymes were detected in three of four AAV-treated animals 14 days after rapamycin withdrawal. One SC-injected animal had muscle inflammation proximal to the injection site, plus detectable T cell responses against transgene and AAV6 capsid at study finish. Overall, our data suggest that rapamycin treatment may offer a possible strategy to express anti-HIV therapeutics such as broadly neutralizing antibodies from muscle. This study provides important safety and efficacy data that will aid study design for future anti-HIV gene therapies.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Proteínas de Repetição de Anquirina Projetadas , Vetores Genéticos/genética , Humanos , Leucócitos Mononucleares , Macaca mulatta , Sirolimo/uso terapêutico , Distribuição Tecidual
3.
Nat Commun ; 9(1): 4438, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361514

RESUMO

Allogeneic transplantation (allo-HCT) has led to the cure of HIV in one individual, raising the question of whether transplantation can eradicate the HIV reservoir. To test this, we here present a model of allo-HCT in SHIV-infected, cART-suppressed nonhuman primates. We infect rhesus macaques with SHIV-1157ipd3N4, suppress them with cART, then transplant them using MHC-haploidentical allogeneic donors during continuous cART. Transplant results in ~100% myeloid donor chimerism, and up to 100% T-cell chimerism. Between 9 and 47 days post-transplant, terminal analysis shows that while cell-associated SHIV DNA levels are reduced in the blood and in lymphoid organs post-transplant, the SHIV reservoir persists in multiple organs, including the brain. Sorting of donor-vs.-recipient cells reveals that this reservoir resides in recipient cells. Moreover, tetramer analysis indicates a lack of virus-specific donor immunity post-transplant during continuous cART. These results suggest that early post-transplant, allo-HCT is insufficient for recipient reservoir eradication despite high-level donor chimerism and GVHD.


Assuntos
Reservatórios de Doenças/virologia , Transplante de Células-Tronco Hematopoéticas , Complexo Principal de Histocompatibilidade , Vírus da Imunodeficiência Símia/fisiologia , Transplante Haploidêntico , Animais , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD8-Positivos/imunologia , DNA Viral/metabolismo , Macaca mulatta , RNA Viral/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Transplante Homólogo
4.
PLoS Pathog ; 14(4): e1006956, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29672640

RESUMO

Autologous transplantation and engraftment of HIV-resistant cells in sufficient numbers should recapitulate the functional cure of the Berlin Patient, with applicability to a greater number of infected individuals and with a superior safety profile. A robust preclinical model of suppressed HIV infection is critical in order to test such gene therapy-based cure strategies, both alone and in combination with other cure strategies. Here, we present a nonhuman primate (NHP) model of latent infection using simian/human immunodeficiency virus (SHIV) and combination antiretroviral therapy (cART) in pigtail macaques. We demonstrate that transplantation of CCR5 gene-edited hematopoietic stem/progenitor cells (HSPCs) persist in infected and suppressed animals, and that protected cells expand through virus-dependent positive selection. CCR5 gene-edited cells are readily detectable in tissues, namely those closely associated with viral reservoirs such as lymph nodes and gastrointestinal tract. Following autologous transplantation, tissue-associated SHIV DNA and RNA levels in suppressed animals are significantly reduced (p ≤ 0.05), relative to suppressed, untransplanted control animals. In contrast, the size of the peripheral reservoir, measured by QVOA, is variably impacted by transplantation. Our studies demonstrate that CCR5 gene editing is equally feasible in infected and uninfected animals, that edited cells persist, traffic to, and engraft in tissue reservoirs, and that this approach significantly reduces secondary lymphoid tissue viral reservoir size. Our robust NHP model of HIV gene therapy and viral persistence can be immediately applied to the investigation of combinatorial approaches that incorporate anti-HIV gene therapy, immune modulators, therapeutic vaccination, and latency reversing agents.


Assuntos
Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Receptores CCR5/genética , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral/fisiologia , Animais , Antirretrovirais/uso terapêutico , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Macaca nemestrina , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Transplante Autólogo , Latência Viral , Replicação Viral
5.
AIDS ; 32(5): 555-563, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29239895

RESUMO

OBJECTIVE: Nonhuman primates (NHPs) are the only animal model that can be used to evaluate protection efficacy of HIV-1 envelope vaccines. However, whether broadly neutralizing antibodies (bnAbs) can be elicited in NHPs infected with simian/human immunodeficiency virus (SHIV) has not been fully understood. The objective of this study is to investigate whether broad neutralization activities were developed in SHIV-infected macaques after long-term infection as in humans. DESIGN: Neutralization breadth and specificities in plasmas from SHIV-infected macaques were determined by analyzing a panel of tier 2 viruses and their mutants. METHODS: Forty-four Chinese macaques infected with SHIV1157ipd3N4, SHIVSF162P3 or SHIVCHN19P4 were followed for 54-321 weeks. Archived plasmas from 19 macaques were used to determine neutralization breadth and specificities against 17 tier 2 envelope-pseudoviruses. RESULTS: Longitudinal plasma from three SHIVSF162P3-infected macaques and three SHIV1157ipd3N4-infected macaques rarely neutralized viruses (<25%) within 1 year of infection. The neutralization breadth in two SHIV1157ipd3N4-infected macaques significantly increased (≥65%) by year 6. Four of six SHIV1157ipd3N4-infected macaques could neutralize 50-75% viruses, whereas none of macaques infected with SHIVSF162P3 or SHIVCHN19P4 could neutralize more than 25% of viruses after 6 years of infection (P = 0.035). Neutralization specificity analysis showed mutations resistant to bnAbs in V2, V3 or CD4bs regions could abrogate neutralization by year-6 plasma from three SHIV1157ipd3N4-infected macaques. CONCLUSION: These results demonstrate that bnAbs targeting common HIV-1 epitopes can be elicited in SHIV1157ipd3N4-infected macaques as in humans after 4-6 years of infection, and SHIV/NHP can serve as an ideal model to study bnAb maturation.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Anti-HIV/sangue , HIV/imunologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Epitopos de Linfócito B/imunologia , Humanos , Estudos Longitudinais , Fatores de Tempo
6.
JCI Insight ; 2(4): e91230, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28239658

RESUMO

The conditioning regimen used as part of the Berlin patient's hematopoietic cell transplant likely contributed to his eradication of HIV infection. We studied the impact of conditioning in simian-human immunodeficiency virus-infected (SHIV-infected) macaques suppressed by combination antiretroviral therapy (cART). The conditioning regimen resulted in a dramatic, but incomplete depletion of CD4+ and CD8+ T cells and CD20+ B cells, increased T cell activation and exhaustion, and a significant loss of SHIV-specific Abs. The disrupted T cell homeostasis and markers of microbial translocation positively correlated with an increased viral rebound after cART interruption. Quantitative viral outgrowth and Tat/rev-induced limiting dilution assays showed that the size of the latent SHIV reservoir did not correlate with viral rebound. These findings identify perturbations of the immune system as a mechanism for the failure of autologous transplantation to eradicate HIV. Thus, transplantation strategies may be improved by incorporating immune modulators to prevent disrupted homeostasis, and gene therapy to protect transplanted cells.


Assuntos
Linfócitos T CD4-Positivos/efeitos da radiação , Linfócitos T CD8-Positivos/efeitos da radiação , Infecções por HIV/imunologia , HIV-1/efeitos da radiação , Transplante de Células-Tronco Hematopoéticas/métodos , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/efeitos da radiação , Condicionamento Pré-Transplante/métodos , Irradiação Corporal Total , Animais , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/tratamento farmacológico , Homeostase/efeitos da radiação , Infecções por Lentivirus/tratamento farmacológico , Infecções por Lentivirus/imunologia , Macaca nemestrina , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Transplante Autólogo , Carga Viral/efeitos da radiação
7.
Mol Ther Methods Clin Dev ; 3: 16007, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26958575

RESUMO

We have focused on gene therapy approaches to induce functional cure/remission of HIV-1 infection. Here, we evaluated the safety and efficacy of the clinical grade anti-HIV lentiviral vector, Cal-1, in pigtailed macaques (Macaca nemestrina). Cal-1 animals exhibit robust levels of gene marking in myeloid and lymphoid lineages without measurable adverse events, suggesting that Cal-1 transduction and autologous transplantation of hematopoietic stem cells are safe, and lead to long-term, multilineage engraftment following myeloablative conditioning. Ex vivo, CD4+ cells from transplanted animals undergo positive selection in the presence of simian/human immunodeficiency virus (SHIV). In vivo, Cal-1 gene-marked cells are evident in the peripheral blood and in HIV-relevant tissue sites such as the gastrointestinal tract. Positive selection for gene-marked cells is observed in blood and tissues following SHIV challenge, leading to maintenance of peripheral blood CD4+ T-cell counts in a normal range. Analysis of Cal-1 lentivirus integration sites confirms polyclonal engraftment of gene-marked cells. Following infection, a polyclonal, SHIV-resistant clonal repertoire is established. These findings offer strong preclinical evidence for safety and efficacy of Cal-1, present a new method for tracking protected cells over the course of virus-mediated selective pressure in vivo, and reveal previously unobserved dynamics of virus-dependent T-cell selection.

8.
AIDS ; 29(13): 1597-606, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26372270

RESUMO

OBJECTIVE: We have previously demonstrated robust control of simian/human immunodeficiency virus (SHIV1157-ipd3N4) viremia following administration of combination antiretroviral therapy (cART) in pigtailed macaques. Here, we sought to determine the safety of hematopoietic stem cell transplantation (HSCT) in cART-suppressed and unsuppressed animals. DESIGN: We compared disease progression in animals challenged with SHIV 100 days post-transplant, to controls that underwent transplant following SHIV challenge and stable cART-dependent viral suppression. METHODS: SHIV viral load, cART levels, and anti-SHIV antibodies were measured longitudinally from plasma/serum from each animal. Flow cytometry was used to assess T-cell subset frequencies in peripheral blood and the gastrointestinal tract. Deep sequencing was used to identify cART resistance mutations. RESULTS: In control animals, virus challenge induced transient peak viremia, viral set point, and durable suppression by cART. Subsequent HSCT was not associated with adverse events in these animals. Post-transplant animals were challenged during acute recovery following HSCT, and displayed sustained peak viremia and cART resistance. Although post-transplant animals had comparable plasma levels of antiretroviral drugs and showed no evidence of enhanced infection of myeloid subsets in the periphery, they exhibited a drastic reduction in virus-specific antibody production and decreased T-cell counts. CONCLUSIONS: These results suggest that virus challenge prior to complete transplant recovery impairs viral control and may promote drug resistance. These findings may also have implications for scheduled treatment interruption studies in patients on cART during post-HSCT recovery: premature scheduled treatment interruption could similarly result in lack of viral control and cART resistance.


Assuntos
Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Farmacorresistência Viral , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Mutação de Sentido Incorreto , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Animais , Antirretrovirais/sangue , Anticorpos Antivirais/sangue , Progressão da Doença , Citometria de Fluxo , Trato Gastrointestinal/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Estudos Longitudinais , Macaca , Masculino , Plasma/química , Plasma/virologia , RNA Viral/genética , Subpopulações de Linfócitos T/imunologia , Carga Viral
9.
Mol Ther ; 23(5): 943-951, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25648264

RESUMO

Recent studies have demonstrated that genetically modified hematopoietic stem cells (HSCs) can reduce HIV viremia. We have developed an HIV/AIDS-patient model in Simian/human immunodeficiency virus (SHIV)-infected pigtailed macaques that are stably suppressed on antiretroviral therapy (ART: raltegravir, emtricitabine and tenofovir). Following SHIV infection and ART, animals undergo autologous HSC transplantation (HSCT) with lentivirally transduced cluster of differentiation (CD)34(+) cells expressing the mC46 anti-HIV fusion protein. We show that SHIV(+), ART-treated animals had very low gene marking levels after HSCT. Pretransduction CD34(+) cells contained detectable levels of all three ART drugs, likely contributing to the low gene transfer efficiency. Following HSCT recovery and the cessation of ART, plasma viremia rebounded, indicating that myeloablative total body irradiation cannot completely eliminate viral reservoirs after autologous HSCT. The kinetics of recovery following autologous HSCT in SHIV(+), ART-treated macaques paralleled those observed following transplantation of control animals. However, T-cell subset analyses demonstrated a high percentage of C-C chemokine receptor 5 (CCR5)-expressing CD4(+) T-cells after HSCT. These data suggest that an extended ART interruption time may be required for more efficient lentiviral transduction. To avoid complications associated with ART interruption in the context of high percentages of CD4(+)CCR5(+)T-cells after HSCT, the use of vector systems not impaired by the presence of residual ART may also be beneficial.


Assuntos
Terapia Antirretroviral de Alta Atividade , Terapia Genética , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Transdução Genética , Animais , Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Imunofenotipagem , Contagem de Linfócitos , Macaca nemestrina , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/efeitos da radiação , Subpopulações de Linfócitos T/virologia , Transgenes , Condicionamento Pré-Transplante , Carga Viral
10.
Vaccine ; 32(48): 6527-36, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25245933

RESUMO

We sought to test whether vaccine-induced immune responses could protect rhesus macaques (RMs) against upfront heterologous challenges with an R5 simian-human immunodeficiency virus, SHIV-2873Nip. This SHIV strain exhibits many properties of transmitted HIV-1, such as tier 2 phenotype (relatively difficult to neutralize), exclusive CCR5 tropism, and gradual disease progression in infected RMs. Since no human AIDS vaccine recipient is likely to encounter an HIV-1 strain that exactly matches the immunogens, we immunized the RMs with recombinant Env proteins heterologous to the challenge virus. For induction of immune responses against Gag, Tat, and Nef, we explored a strategy of immunization with overlapping synthetic peptides (OSP). The immune responses against Gag and Tat were finally boosted with recombinant proteins. The vaccinees and a group of ten control animals were given five low-dose intrarectal (i.r.) challenges with SHIV-2873Nip. All controls and seven out of eight vaccinees became systemically infected; there was no significant difference in viremia levels of vaccinees vs. controls. Prevention of viremia was observed in one vaccinee which showed strong boosting of virus-specific cellular immunity during virus exposures. The protected animal showed no challenge virus-specific neutralizing antibodies in the TZM-bl or A3R5 cell-based assays and had low-level ADCC activity after the virus exposures. Microarray data strongly supported a role for cellular immunity in the protected animal. Our study represents a case of protection against heterologous tier 2 SHIV-C by vaccine-induced, virus-specific cellular immune responses.


Assuntos
Vacinas contra a AIDS/imunologia , Imunidade nas Mucosas , Vacinação/métodos , Animais , Anticorpos Neutralizantes/sangue , Produtos do Gene gag/imunologia , Produtos do Gene nef/imunologia , Anticorpos Anti-HIV/sangue , Proteína gp160 do Envelope de HIV/imunologia , HIV-1 , Imunidade Celular , Imunidade Humoral , Macaca mulatta/imunologia , Proteínas Recombinantes/imunologia , Vírus da Imunodeficiência Símia , Vacinas Sintéticas/imunologia , Viremia/prevenção & controle , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia
11.
PLoS One ; 8(6): e66973, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840566

RESUMO

A better understanding of how the biological functions of the HIV-1 envelope (Env) changes during disease progression may aid the design of an efficacious anti-HIV-1 vaccine. Although studies from patient had provided some insights on this issue, the differences in the study cohorts and methodology had make it difficult to reach a consensus of the variations in the HIV-1 Env functions during disease progression. To this end, an animal model that can be infected under controlled environment and reflect the disease course of HIV-1 infection in human will be beneficial. Such an animal model was previously demonstrated by the infection of macaque with SHIV, expressing HIV-1 clade C Env V1-V5 region. By using this model, we examined the changes in biological functions of Env in the infected animal over the entire disease course. Our data showed an increase in the neutralization resistance phenotype over time and coincided with the decrease in the net charges of the V1-V5 region. Infection of PBMC with provirus expressing various Env clones, isolated from the infected animal over time, showed a surprisingly better replicative fitness for viruses expressing the Env from early time point. Biotinylation and ELISA data also indicated a decrease of cell-surface-associated Env and virion-associated gp120 content with disease progression. This decrease did not affect the CD4-binding capability of Env, but were positively correlated with the decrease of Env fusion ability. Interestingly, some of these changes in biological functions reverted to the pre-AIDS level during advance AIDS. These data suggested a dynamic relationship between the Env V1-V5 region with the host immune pressure. The observed changes of biological functions in this setting might reflect and predict those occurring during natural disease progression in human.


Assuntos
Progressão da Doença , HIV-1/metabolismo , Vírus da Imunodeficiência Símia/fisiologia , Proteínas do Envelope Viral/metabolismo , Animais , Antígenos CD4/metabolismo , Células HEK293 , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Cinética , Macaca mulatta , Proteínas do Envelope Viral/genética , Vírion/metabolismo , Replicação Viral
12.
Blood ; 122(2): 179-87, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23719296

RESUMO

Despite continued progress in the development of novel antiretroviral therapies, it has become increasingly evident that drug-based treatments will not lead to a functional or sterilizing cure for HIV(+) patients. In 2009, an HIV(+) patient was effectively cured of HIV following allogeneic transplantation of hematopoietic stem cells (HSCs) from a CCR5(-/-) donor. The utility of this approach, however, is severely limited because of the difficulty in finding matched donors. Hence, we studied the potential of HIV-resistant stem cells in the autologous setting in a nonhuman primate AIDS model and incorporated a fusion inhibitor (mC46) as the means for developing infection-resistant cells. Pigtail macaques underwent identical transplants and Simian-Human Immunodeficiency Virus (SHIV) challenge procedures with the only variation between control and mC46 macaques being the inclusion of a fusion-inhibitor expression cassette. Following SHIV challenge, mC46 macaques, but not control macaques, showed a positive selection of gene-modified CD4(+) T cells in peripheral blood, gastrointestinal tract, and lymph nodes, accounting for >90% of the total CD4(+) T-cell population. mC46 macaques also maintained high frequencies of SHIV-specific, gene-modified CD4(+) T cells, an increase in nonmodified CD4(+) T cells, enhanced cytotoxic T lymphocyte function, and antibody responses. These data suggest that HSC protection may be a potential alternative to conventional antiretroviral therapy in patients with HIV/AIDS.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proteínas Recombinantes de Fusão/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Antígenos Virais/imunologia , Linfócitos B/imunologia , Contagem de Linfócito CD4 , Relação CD4-CD8 , Linfócitos T CD4-Positivos/virologia , Terapia Baseada em Transplante de Células e Tecidos , Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Macaca nemestrina , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral , Viremia/imunologia , Viremia/virologia
13.
PLoS One ; 7(10): e48166, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23110202

RESUMO

In humans, invariant natural killer T (iNKT) cells represent a small but significant population of peripheral blood mononuclear cells (PBMCs) with a high degree of variability. In this study, pursuant to our goal of identifying an appropriate non-human primate model suitable for pre-clinical glycolipid testing, we evaluated the percentage and function of iNKT cells in the peripheral blood of pig-tailed macaques. First, using a human CD1d-tetramer loaded with α-GalCer (α-GalCer-CD1d-Tet), we found that α-GalCer-CD1d-Tet(+) CD3(+) iNKT cells make up 0.13% to 0.4% of pig-tailed macaque PBMCs, which are comparable to the percentage of iNKT cells found in human PBMCs. Second, we observed that a large proportion of Vα24(+)CD3(+) cells are α-GalCer-CD1d-Tet(+)CD3(+) iNKT cells, which primarily consist of either the CD4(+) or CD8(+) subpopulation. Third, we found that pig-tailed macaque iNKT cells produce IFN-γ in response to α-GalCer, as shown by ELISpot assay and intracellular cytokine staining (ICCS), as well as TNF-α, as shown by ICCS, indicating that these iNKT cells are fully functional. Interestingly, the majority of pig-tailed macaque iNKT cells that secrete IFN-γ are CD8(+)iNKT cells. Based on these findings, we conclude that the pig-tailed macaques exhibit potential as a non-human animal model for the pre-clinical testing of iNKT-stimulating glycolipids.


Assuntos
Macaca/imunologia , Células T Matadoras Naturais/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Citometria de Fluxo , Interferon gama/metabolismo , Leucócitos Mononucleares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
PLoS One ; 7(6): e38943, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737224

RESUMO

Existing technologies allow isolating antigen-specific monoclonal antibodies (mAbs) from B cells. We devised a direct approach to isolate mAbs with predetermined conformational epitope specificity, using epitope mimetics (mimotopes) that reflect the three-dimensional structure of given antigen subdomains. We performed differential biopanning using bacteriophages encoding random peptide libraries and polyclonal antibodies (Abs) that had been affinity-purified with either native or denatured antigen. This strategy yielded conformational mimotopes. We then generated mimotope-fluorescent protein fusions, which were used as baits to isolate single memory B cells from rhesus monkeys (RMs). To amplify RM immunoglobulin variable regions, we developed RM-specific PCR primers and generated chimeric simian-human mAbs with predicted epitope specificity. We established proof-of-concept of our strategy by isolating mAbs targeting the conformational V3 loop crown of HIV Env; the new mAbs cross-neutralized viruses of different clades. The novel technology allows isolating mAbs from RMs or other hosts given experimental immunogens or infectious agents.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Epitopos/química , Animais , Anticorpos Monoclonais/química , Autoantígenos/química , Linfócitos B/imunologia , Bacteriófagos/metabolismo , Linhagem Celular Tumoral , Separação Celular , Mapeamento de Epitopos/métodos , Citometria de Fluxo , HIV/metabolismo , Humanos , Técnicas Imunológicas/métodos , Leucócitos Mononucleares/virologia , Biblioteca de Peptídeos , Peptídeos/química , Reação em Cadeia da Polimerase/métodos , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
15.
J Virol ; 86(14): 7605-15, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22553338

RESUMO

Human immunodeficiency virus type 1 (HIV-1) infection is characterized by persistent viral replication in the context of CD4(+) T cell depletion and elevated immune activation associated with disease progression. In contrast, simian immunodeficiency virus (SIV) infection of African-origin sooty mangabeys (SM) generally does not result in simian AIDS despite high viral loads and therefore affords a unique model in which to study the immunologic contributions to a nonpathogenic lentiviral disease outcome. A key feature of these natural SIV infections is the maintenance of low levels of immune activation during chronic infection. Our goal was to delineate the contribution of monocytes to maintaining low levels of immune activation in SIV-infected SM. Utilizing an ex vivo whole-blood assay, proinflammatory cytokine production was quantified in monocytes in response to multiple Toll-like receptor (TLR) ligands and a specific, significant reduction in the tumor necrosis factor alpha (TNF-α) response to lipopolysaccharide (LPS) was observed in SIV-infected SM. In contrast, monocytes from hosts of pathogenic infections (HIV-infected humans and SIV-infected Asian macaques) maintained a robust TNF-α response. In SIV-infected SM, monocyte TNF-α responses to low levels of LPS could be augmented by the presence of plasma from uninfected control animals. The impact of LPS-induced TNF-α production on immune activation was demonstrated in vitro, as TNF-α blocking antibodies inhibited downstream CD8(+) T cell activation in a dose-dependent manner. These data demonstrate an association between nonpathogenic SIV infection of SM and a reduced monocyte TNF-α response to LPS, and they identify a role for monocytes in contributing to the suppressed chronic immune activation observed in these natural hosts.


Assuntos
Cercocebus atys/imunologia , Ativação Linfocitária , Monócitos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/patogenicidade , Fator de Necrose Tumoral alfa/biossíntese , Animais , Linfócitos T CD8-Positivos/imunologia , Cercocebus atys/virologia , HIV-1/imunologia , Humanos , Interleucina-10/genética , Lipopolissacarídeos/imunologia , Monócitos/metabolismo , Fagocitose , Fito-Hemaglutininas/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/metabolismo , Ácidos Teicoicos/imunologia , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética , Carga Viral
16.
PLoS One ; 7(3): e32827, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22427893

RESUMO

Understanding the evolution of the human immunodeficiency virus type 1 (HIV-1) envelope during disease progression can provide tremendous insights for vaccine development, and simian-human immunodeficiency virus (SHIV) infection of non-human primate provides an ideal platform for such studies. A newly developed clade C SHIV, SHIV-1157ipd3N4, which was able to infect rhesus macaques, closely resembled primary HIV-1 in transmission and pathogenesis, was used to infect several pig-tailed macaques. One of the infected animals subsequently progressed to AIDS, whereas one remained a non-progressor. The viral envelope evolution in the infected animals during disease progression was analyzed by a bioinformatics approach using ultra-deep pyrosequencing. Our results showed substantial envelope variations emerging in the progressor animal after the onset of AIDS. These envelope variations impacted the length of the variable loops and charges of different envelope regions. Additionally, multiple mutations were located at the CD4 and CCR5 binding sites, potentially affecting receptor binding affinity, viral fitness and they might be selected at late stages of disease. More importantly, these envelope mutations are not random since they had repeatedly been observed in a rhesus macaque and a human infant infected by either SHIV or HIV-1, respectively, carrying the parental envelope of the infectious molecular clone SHIV-1157ipd3N4. Moreover, similar mutations were also observed from other studies on different clades of envelopes regardless of the host species. These recurring mutations in different envelopes suggest that there may be a common evolutionary pattern and selection pathway for the HIV-1 envelope during disease progression.


Assuntos
Síndrome da Imunodeficiência Adquirida/genética , Evolução Molecular , HIV-1/genética , Vírus da Imunodeficiência Símia/genética , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/genética , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/imunologia , Contagem de Células , Progressão da Doença , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Macaca nemestrina , Dados de Sequência Molecular , Mutação/genética , Filogenia , Receptores CCR5/metabolismo , Proteínas do Envelope Viral/metabolismo
17.
Vaccine ; 29(34): 5611-22, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21693155

RESUMO

We sought to induce primate immunodeficiency virus-specific cellular and neutralizing antibody (nAb) responses in rhesus macaques (RM) through a bimodal vaccine approach. RM were immunized intragastrically (i.g.) with the live-attenuated Listeria monocytogenes (Lm) vector Lmdd-BdopSIVgag encoding SIVmac239 gag. SIV Gag-specific cellular responses were boosted by intranasal and intratracheal administration of replication-competent adenovirus (Ad5hr-SIVgag) encoding the same gag. To broaden antiviral immunity, the RM were immunized with multimeric HIV clade C (HIV-C) gp160 and HIV Tat. SIV Gag-specific cellular immune responses and HIV-1 nAb developed in some RM. The animals were challenged intrarectally with five low doses of R5 SHIV-1157ipEL-p, encoding a heterologous HIV-C Env (22.1% divergent to the Env immunogen). All five controls became viremic. One out of ten vaccinees was completely protected and another had low peak viremia. Sera from the completely and partially protected RM neutralized the challenge virus > 90%; these RM also had strong SIV Gag-specific proliferation of CD8⁺ T cells. Peak and area under the curve of plasma viremia (during acute phase) among vaccinees was lower than for controls, but did not attain significance. The completely protected RM showed persistently low numbers of the α4ß7-expressing CD4⁺ T cells; the latter have been implicated as preferential virus targets in vivo. Thus, vaccine-induced immune responses and relatively lower numbers of potential target cells were associated with protection.


Assuntos
Adenoviridae/imunologia , Produtos do Gene gag/imunologia , Proteína gp160 do Envelope de HIV/imunologia , Listeria monocytogenes/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia , Adenoviridae/genética , Animais , Anticorpos Neutralizantes/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , ELISPOT , Produtos do Gene gag/administração & dosagem , Proteína gp160 do Envelope de HIV/administração & dosagem , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Imunidade nas Mucosas , Imunização Secundária , Interferon gama/análise , Listeria monocytogenes/genética , Macaca mulatta/imunologia , Macaca mulatta/virologia , Vírus da Imunodeficiência Símia/imunologia , Vacinação , Carga Viral , Viremia/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/administração & dosagem
18.
PLoS One ; 6(4): e18465, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21483689

RESUMO

BACKGROUND: HIV-1 is a pathogen that T cell responses fail to control. HIV-1gp120 is the surface viral envelope glycoprotein that interacts with CD4 T cells and mediates entry. HIV-1gp120 has been implicated in immune dysregulatory functions that may limit anti-HIV antigen-specific T cell responses. We hypothesized that in the context of early SHIV infection, immune dysregulation of antigen-specific T-effector cell and regulatory functions would be detectable and that these would be associated or correlated with measurable concentrations of HIV-1gp120 in lymphoid tissues. METHODS: Rhesus macaques were intravaginally inoculated with a Clade C CCR5-tropic simian-human immunodeficiency virus, SHIV-1157ipd3N4. HIV-1gp120 levels, antigen-specificity, levels of apoptosis/anergy and frequency and function of Tregs were examined in lymph node and blood derived T cells at 5 and 12 weeks post inoculation. RESULTS/CONCLUSIONS: We observed reduced responses to Gag in CD4 and gp120 in CD8 lymph node-derived T cells compared to the peripheral blood at 5 weeks post-inoculation. Reduced antigen-specific responses were associated with higher levels of PD-1 on lymph node-derived CD4 T cells as compared to peripheral blood and uninfected lymph node-derived CD4 T cells. Lymph nodes contained increased numbers of Tregs as compared to peripheral blood, which positively correlated with gp120 levels; T regulatory cell depletion restored CD8 T cell responses to Gag but not to gp120. HIV gp120 was also able to induce T regulatory cell chemotaxis in a dose-dependent, CCR5-mediated manner. These studies contribute to our broader understanding of the ways in which HIV-1 dysregulates T cell function and localization during early infection.


Assuntos
Linfonodos/citologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Especificidade de Anticorpos , Antígenos CD/imunologia , Antígenos CD/metabolismo , Morte Celular/imunologia , Quimiotaxia/imunologia , Produtos do Gene gag/imunologia , Produtos do Gene gag/metabolismo , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Linfonodos/imunologia , Linfonodos/metabolismo , Macaca mulatta , Mucosa/virologia , Receptores CCR5/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T Reguladores/citologia , Fatores de Tempo
19.
Retrovirology ; 6: 65, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19602283

RESUMO

BACKGROUND: Although pig-tailed macaques (Macaca nemestrina) have been used in AIDS research for years, less is known about the early immunopathogenic events in this species, as compared to rhesus macaques (Macaca mulatta). Similarly, the events in early infection are well-characterized for simian immunodeficiency viruses (SIV), but less so for chimeric simian-human immunodeficiency viruses (SHIV), although the latter have been widely used in HIV vaccine studies. Here, we report the consequences of intrarectal infection with a CCR5-tropic clade C SHIV-1157ipd3N4 in pig-tailed macaques. RESULTS: Plasma and cell-associated virus was detectable in peripheral blood and intestinal tissues of all four pig-tailed macaques following intrarectal inoculation with SHIV-1157ipd3N4. We also observed a rapid and irreversible loss of CD4+ T cells at multiple mucosal sites, resulting in a marked decrease of CD4:CD8 T cell ratios 0.5-4 weeks after inoculation. This depletion targeted subsets of CD4+ T cells expressing the CCR5 coreceptor and having a CD28-CD95+ effector memory phenotype, consistent with the R5-tropism of SHIV-1157ipd3N4. All three animals that were studied beyond the acute phase seroconverted as early as week 4, with two developing cross-clade neutralizing antibody responses by week 24. These two animals also demonstrated persistent plasma viremia for >48 weeks. One of these animals developed AIDS, as shown by peripheral blood CD4+ T-cell depletion starting at 20 weeks post inoculation. CONCLUSION: These findings indicate that SHIV-1157ipd3N4-induced pathogenesis in pig-tailed macaques followed a similar course as SIV-infected rhesus macaques. Thus, R5 SHIV-C-infection of pig-tailed macaques could provide a useful and relevant model for AIDS vaccine and pathogenesis research.


Assuntos
HIV/crescimento & desenvolvimento , HIV/imunologia , Macaca nemestrina/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Antivirais/sangue , Sangue/virologia , Antígenos CD28/análise , Relação CD4-CD8 , Linfócitos T CD4-Positivos/química , Linfócitos T CD4-Positivos/imunologia , HIV/genética , Mucosa Intestinal/virologia , Subpopulações de Linfócitos/imunologia , Testes de Neutralização , Receptores CCR5/análise , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/genética , Receptor fas
20.
J Virol ; 82(12): 5912-21, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18400850

RESUMO

The vast majority of studies with candidate immunogens based on the human immunodeficiency virus envelope (Env) have been conducted with Env proteins derived from clade B viruses isolated during chronic infection. Whether non-clade B Env protein immunogens will elicit antibodies with epitope specificities that are similar to those of antibodies elicited by clade B Envs and whether the antibodies elicited by Envs derived from early transmitted viruses will be similar to those elicited by Envs derived from viruses isolated during chronic infection are currently unknown. Here we performed immunizations with four clade A Envs, cloned directly from the peripheral blood of infected individuals during acute infection, which differed in lengths and extents of glycosylation. The antibody responses elicited by these four Envs were compared to each other and to those elicited by a well-characterized clade B Env immunogen derived from the SF162 virus, which was isolated during chronic infection. Only one clade A Env, the one with the fewer glycosylation sites, elicited homologous neutralizing antibodies (NAbs); these did not target the V1, V2, or V3 regions. In contrast, all four clade A Envs elicited anti-V3 NAbs against "easy-to-neutralize" clade B and clade A isolates, irrespective of the variable region length and extent of glycosylation of the Env used as an immunogen. These anti-V3 NAbs did not access their epitopes on homologous and heterologous clade A, or B, neutralization-resistant viruses. The length and extent of glycosylation of the variable regions on the clade A Env immunogens tested did not affect the breadth of the elicited NAbs. Our data also indicate that the development of cross-reactive NAbs against clade A viruses faces similar hurdles to the development of cross-reactive anti-clade B NAbs.


Assuntos
Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular , Mapeamento de Epitopos , Feminino , Glicosilação , HIV , Anticorpos Anti-HIV/isolamento & purificação , Proteína gp120 do Envelope de HIV/genética , Humanos , Soros Imunes/imunologia , Rim/citologia , Masculino , Dados de Sequência Molecular , Testes de Neutralização , Coelhos , Transfecção , Vírion/genética , Vírion/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA