Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 23(8): 2129-34, 2012 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-23189689

RESUMO

From January 2008 to January 2009, a field experiment was conducted to investigate the effects of simulated nitrogen (N) deposition (0, 5, 15, and 30 g N x m(-2) x a(-1)) on the soil enzyme activities in a Betula luminifera plantation in Rainy Area of West China. As compared with the control (0 g N x m(-2) x a(-1)), simulated N deposition stimulated the activities of soil hydrolases (beta-fructofuranosidase, cellulase, acid phosphatase, and urease) significantly, but depressed the activities of soil oxidases (polyphenol oxidase and peroxidase). These results suggested that the increased exogenous inorganic N could stimulate soil microbial activity and increase the demands of both B. luminifera and soil microbes for C and P, whereas the depress of soil polyphenol oxidase and peroxidase activities under N addition could inhibit the degradation of litter and promote its accumulation in soil, leading to the increase of soil C storage in the B. luminifera plantation ecosystem.


Assuntos
Betula/crescimento & desenvolvimento , Hidrolases/metabolismo , Nitrogênio/análise , Oxirredutases/metabolismo , Solo/química , Betula/química , Carbono/análise , China , Simulação por Computador , Ecossistema , Peroxidase/metabolismo , Folhas de Planta/química , Chuva/química
2.
Ying Yong Sheng Tai Xue Bao ; 21(11): 2734-41, 2010 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-21360993

RESUMO

Different levels (0, 90, 180, and 270 g per tree) of compound fertilizer containing 15% N, 15% P2O5, and 15% K2O were applied to young Eucalyptus grandis to study the diurnal variations of its leaf stomatal conductance (Gs), intercellular CO2 concentration (Ci), net photosynthesis rate (Pn), transpiration rate (Tr), water use efficiency (WUE), and vapor pressure deficit on leaf surface (Vpdl) as well as the variation of leaf chlorophyll content, aimed to approach the relationships of E. grandis photosynthesis with fertilization and environmental factors. In all treatments, the diurnal variation of Pn presented a single-peak curve, with the peak at 14:00 and not showing midday depression. The Gs, Tr, and Vpdl showed the similar trend with Pn, while the Ci had a minimum value at 14:00. The WUE demonstrated a double-peak curve, with the first and second peak occurred at 10:00 and 14:00, respectively. Comparing with the control, the mean values of Gs, Pn, Tr, WUE, and chlorophyll a, chlorophyll b, and total chlorophyll contents under fertilization increased by 4.6%-15.9%, 7.8%-21.8%, 4.8%-11.6%, 3.2%-8.8%, 15.5%-62.0%, 14.5%-44.5% and 15.3%-57.1%, respectively, and the increment increased with fertilization level. By contrast, the mean values of Ci and VPdl decreased by 14.5%-44.5% and 15.3%-57.1%, respectively, and the decrement increased with fertilization level. The Gs, Pn, and Tr were significantly correlated with air temperature, relative humidity (RH), and photosynthetic active radiation (PAR), and also, the Gs was significantly correlated with Pn and Tr. It was suggested that fertilization could promote E. grandis growth and enhance its WUE and biological carbon sequestration, and air temperature, RH, PAR, and Gs were the main factors causing the diurnal variations of photosynthesis and transpiration of E. grandis.


Assuntos
Eucalyptus/metabolismo , Fertilizantes , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Ritmo Circadiano , Transpiração Vegetal
3.
Ying Yong Sheng Tai Xue Bao ; 20(12): 2943-8, 2009 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-20353060

RESUMO

From November 2007 to May 2009, a simulation test was conducted in a Pleioblastus amarus plantation in Rainy Area of West China to study the effects of nitrogen deposition on the activities of soil enzymes. Four treatments were installed, i.e., control (0 g N x m(-2) x a(-1)), low nitrogen (5 g N x m(-2) x a(-1)), medium nitrogen (15 g N x m(-2) x a(-1)), and high nitrogen (30 g N x m(-2) x a(-1)). Half year after N deposition, 0-20 cm soil samples were collected monthly, and the activities of peroxidase, polyphenol oxidase, cellulase, sucrase, urease, and acid phosphatase were determined. All test enzyme activities had apparent, seasonal variation, with the peak of cellulase, suerase, and acid phosphatase activities in spring, of urease activity in autumn, and of peroxidase and polyphenol oxidase activities in winter. Nitrogen deposition stimulated the activities of polyphenol oxidase, sucrase, urease, and acid phosphatase, inhibited cellulase activity, but had no significant effects on peroxidase activity. The test P. amurus plantation ecosystem was N-limited, and nitrogen deposition stimulated the decomposition of soil organic matter by microbe-enzyme system.


Assuntos
Nitrogênio/análise , Peroxidase/metabolismo , Poaceae/crescimento & desenvolvimento , Solo/análise , Urease/metabolismo , Celulase/metabolismo , China , Simulação por Computador , Ecossistema , Modelos Teóricos , Chuva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA