Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 11(2)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35205112

RESUMO

Innate immunity is considered the first line of defense against microbial invasion, and its dysregulation can increase the susceptibility of hosts to infections by invading pathogens. Host cells rely on pattern recognition receptors (PRRs) to recognize invading pathogens and initiate protective innate immune responses. Toll-like receptor 2 (TLR2) is believed to be among the most important Toll-like receptors for defense against mycobacterial infection. TLR2 has been reported to have very broad functions in infectious diseases and also in other diseases, such as chronic and acute inflammatory diseases, cancers, and even metabolic disorders. However, TLR2 has an unclear dual role in both the activation and suppression of innate immune responses. Moreover, in some studies, the function of TLR2 was shown to be controversial, and therefore its role in several diseases is still inconclusive. Therefore, although TLR2 has been shown to have an important function in innate immunity, its usefulness as a therapeutic target in clinical application is still uncertain. In this literature review, we summarize the knowledge of the functions of TLR2 in host-mycobacterial interactions, discuss controversial results, and suggest possibilities for future research.

2.
Front Immunol ; 13: 1075473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741407

RESUMO

Mycobacterium avium is the most common nontuberculous mycobacterium (NTM) species causing infectious disease. Here, we characterized a M. avium infection model in zebrafish larvae, and compared it to M. marinum infection, a model of tuberculosis. M. avium bacteria are efficiently phagocytosed and frequently induce granuloma-like structures in zebrafish larvae. Although macrophages can respond to both mycobacterial infections, their migration speed is faster in infections caused by M. marinum. Tlr2 is conservatively involved in most aspects of the defense against both mycobacterial infections. However, Tlr2 has a function in the migration speed of macrophages and neutrophils to infection sites with M. marinum that is not observed with M. avium. Using RNAseq analysis, we found a distinct transcriptome response in cytokine-cytokine receptor interaction for M. avium and M. marinum infection. In addition, we found differences in gene expression in metabolic pathways, phagosome formation, matrix remodeling, and apoptosis in response to these mycobacterial infections. In conclusion, we characterized a new M. avium infection model in zebrafish that can be further used in studying pathological mechanisms for NTM-caused diseases.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Micobactérias não Tuberculosas , Animais , Peixe-Zebra , Receptor 2 Toll-Like , Imunidade Inata , Larva
3.
BMC Genomics ; 20(1): 878, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747871

RESUMO

BACKGROUND: The function of Toll-like receptor 2 (TLR2) in host defense against pathogens, especially Mycobacterium tuberculosis (Mtb) is poorly understood. To investigate the role of TLR2 during mycobacterial infection, we analyzed the response of tlr2 zebrafish mutant larvae to infection with Mycobacterium marinum (Mm), a close relative to Mtb, as a model for tuberculosis. We measured infection phenotypes and transcriptome responses using RNA deep sequencing in mutant and control larvae. RESULTS: tlr2 mutant embryos at 2 dpf do not show differences in numbers of macrophages and neutrophils compared to control embryos. However, we found substantial changes in gene expression in these mutants, particularly in metabolic pathways, when compared with the heterozygote tlr2+/- control. At 4 days after Mm infection, the total bacterial burden and the presence of extracellular bacteria were higher in tlr2-/- larvae than in tlr2+/-, or tlr2+/+ larvae, whereas granuloma numbers were reduced, showing a function of Tlr2 in zebrafish host defense. RNAseq analysis of infected tlr2-/- versus tlr2+/- shows that the number of up-regulated and down-regulated genes in response to infection was greatly diminished in tlr2 mutants by at least 2 fold and 10 fold, respectively. Analysis of the transcriptome data and qPCR validation shows that Mm infection of tlr2 mutants leads to decreased mRNA levels of genes involved in inflammation and immune responses, including il1b, tnfb, cxcl11aa/ac, fosl1a, and cebpb. Furthermore, RNAseq analyses revealed that the expression of genes for Maf family transcription factors, vitamin D receptors, and Dicps proteins is altered in tlr2 mutants with or without infection. In addition, the data indicate a function of Tlr2 in the control of induction of cytokines and chemokines, such as the CXCR3-CXCL11 signaling axis. CONCLUSION: The transcriptome and infection burden analyses show a function of Tlr2 as a protective factor against mycobacteria. Transcriptome analysis revealed tlr2-specific pathways involved in Mm infection, which are related to responses to Mtb infection in human macrophages. Considering its dominant function in control of transcriptional processes that govern defense responses and metabolism, the TLR2 protein can be expected to be also of importance for other infectious diseases and interactions with the microbiome.


Assuntos
Doenças dos Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/veterinária , Receptor 2 Toll-Like/genética , Peixe-Zebra/genética , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/imunologia , Quimiocina CXCL11/genética , Quimiocina CXCL11/imunologia , Resistência à Doença/genética , Embrião não Mamífero , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/microbiologia , Linfotoxina-alfa/genética , Linfotoxina-alfa/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Fatores de Transcrição Maf/genética , Fatores de Transcrição Maf/imunologia , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/imunologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/imunologia , Mycobacterium marinum/patogenicidade , Neutrófilos/imunologia , Neutrófilos/microbiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/imunologia , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/imunologia , Transcriptoma/imunologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA