Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
1.
J Colloid Interface Sci ; 670: 191-203, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761572

RESUMO

Transition metal chalcogenides (TMCs) hold great potential for sodium-ion batteries (SIBs) owing to their multielectron conversion reactions, yet face challenges of poor intrinsic conductivity, sluggish diffusion kinetics, severe phase transitions, and structural collapse during cycling. Herein, a self-templating strategy is proposed for the synthesis of a class of metal cobalt-doped NiSe nanoparticles confined within three-dimensional (3D) N-doped macroporous carbon matrix nanohybrids (Co-NiSe/NMC). The cation defect engineering within the developed Co-NiSe and 3D N-doped carbon plays a crucial role in enhancing intrinsic conductivity, reinforcing structural stability, and reducing the barrier to sodium ion diffusion, which are verified by a series of electrochemical kinetic analyses and density functional theory calculations. Significantly, such cation defect engineering not only reduces overpotential but also accelerates conversion reaction kinetics, ensuring both exceptional high-rate capability and extended durability. Consequently, the optimally engineered Co-NiSe/NMC demonstrates a remarkable rate performance, delivering 390 mAh g-1 at 10 A g-1. Moreover, it exhibits an unprecedented lifespan, maintaining a remarkable capacity of 403 mAh g-1 after 1400 cycles and 318 mAh g-1 after 4000 cycles, even at high rates of 1.0 and 2.0 A g-1, respectively. This work marks a substantial advancement in achieving both high performance and prolonged cycle life in sodium-ion batteries.

2.
Diabetes Obes Metab ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38699782

RESUMO

AIM: To investigate the effects of adenosine kinase (ADK), a key enzyme in determining intracellular adenosine levels, on ß cells, and their underlying mechanism. METHODS: Genetic animal models and transgenic immortalized cells were applied to study the effect of ADK on islet beta-cell proliferation and function. The beta-cell mass and response to glucose were measured in vivo using mice with beta-cell-specific ADK overexpression, and in vitro using ADK-overexpressed immortalized beta-cell. RESULTS: The expression of ADK in human islets at high abundance, especially in ß cells, was decreased during the process of ß-cell proliferation. Additionally, a transgenic mouse model (ADKtg/tg /Mip-Cre) was generated wherein the mouse Insulin1 gene promoter specifically overexpressed ADK in pancreatic ß cells. The ADKtg/tg /Mip-Cre model exhibited impaired glucose tolerance, decreased fasting plasma insulin, loss of ß-cell mass, and inhibited ß-cell proliferation. Proteomic analysis revealed that ADK overexpression inhibited the expression of several proteins that promote cell proliferation and insulin secretion. Upregulating ADK in the ß-cell line inhibited the expression of ß-cell related regulatory molecules, including FoxO1, Appl1, Pxn, Pdx-1, Creb and Slc16a3. Subsequent in vitro experiments indicated that the inhibition of ß-cell proliferation and the decreased expression of Pdx-1, Creb and Slc16a3 were rescued by DNA methyltransferase 3A (DNMT3A) knockdown in ß cells. CONCLUSION: In this study, we found that the overexpression of ADK decreased the expression of several genes that regulate ß cells, resulting in the inhibition of ß-cell proliferation and dysfunction by upregulating the expression of DNMT3A.

3.
Acta Pharm Sin B ; 14(4): 1693-1710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572108

RESUMO

Protein tyrosine kinases (RTKs) modulate a wide range of pathophysiological events in several non-malignant disorders, including diabetic complications. To find new targets driving the development of diabetic cardiomyopathy (DCM), we profiled an RTKs phosphorylation array in diabetic mouse hearts and identified increased phosphorylated fibroblast growth factor receptor 1 (p-FGFR1) levels in cardiomyocytes, indicating that FGFR1 may contribute to the pathogenesis of DCM. Using primary cardiomyocytes and H9C2 cell lines, we discovered that high-concentration glucose (HG) transactivates FGFR1 kinase domain through toll-like receptor 4 (TLR4) and c-Src, independent of FGF ligands. Knocking down the levels of either TLR4 or c-Src prevents HG-activated FGFR1 in cardiomyocytes. RNA-sequencing analysis indicates that the elevated FGFR1 activity induces pro-inflammatory responses via MAPKs-NFκB signaling pathway in HG-challenged cardiomyocytes, which further results in fibrosis and hypertrophy. We then generated cardiomyocyte-specific FGFR1 knockout mice and showed that a lack of FGFR1 in cardiomyocytes prevents diabetes-induced cardiac inflammation and preserves cardiac function in mice. Pharmacological inhibition of FGFR1 by a selective inhibitor, AZD4547, also prevents cardiac inflammation, fibrosis, and dysfunction in both type 1 and type 2 diabetic mice. These studies have identified FGFR1 as a new player in driving DCM and support further testing of FGFR1 inhibitors for possible cardioprotective benefits.

4.
World J Surg Oncol ; 22(1): 87, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582834

RESUMO

BACKGROUND: To investigate the short-term and long-term outcomes of preserving the celiac branch of the vagus nerve during laparoscopic distal gastrectomy. METHODS: A total of 149 patients with prospective diagnosis of gastric cancer who underwent laparoscopic-assisted distal gastrectomy (LADG) combined with Billroth-II anastomosis and D2 lymph node dissection between 2017 and 2018 were retrospectively analyzed. The patients were divided into the preserved LADG group (P-LADG, n = 56) and the resected LADG group (R-LADG, n = 93) according to whether the vagus nerve celiac branch was preserved. We selected 56 patients (P-LADG, n = 56) with preservation of the celiac branch of the vagus nerve and 56 patients (R-LADG, n = 56) with removal of the celiac branch of the vagus nerve by propensity-matched score method. Postoperative nutritional status, weight change, short-term and long-term postoperative complications, and gallstone formation were evaluated in both groups at 5 years of postoperative follow-up. The status of residual gastritis and bile reflux was assessed endoscopically at 12 months postoperatively. RESULTS: The incidence of diarrhea at 5 years postoperatively was lower in the P-LADG group than in the R-LADG group (p < 0.05). In the multivariate logistic analysis, the removal of vagus nerve celiac branch was an independent risk factor for the occurrence of postoperative diarrhea (odds ratio = 3.389, 95% confidential interval = 1.143-10.049, p = 0.028). In the multivariate logistic analysis, the removal of vagus nerve celiac branch was an independent risk factor for the occurrence of postoperative diarrhea (odds ratio = 4.371, 95% confidential interval = 1.418-13.479, p = 0.010). CONCLUSIONS: Preservation of the celiac branch of the vagus nerve in LADG reduced the incidence of postoperative diarrhea postoperatively in gastric cancer. TRIAL REGISTRATION: This study was registered with the Ethics Committee of the First Affiliated Hospital of Dalian Medical University in 2014 under the registration number: LCKY2014-04(X).


Assuntos
Laparoscopia , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Estudos de Coortes , Estudos Retrospectivos , Estudos Prospectivos , Incidência , Gastrectomia/efeitos adversos , Gastrectomia/métodos , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Nervo Vago/patologia , Nervo Vago/cirurgia , Diarreia/epidemiologia , Diarreia/etiologia , Diarreia/prevenção & controle , Resultado do Tratamento
5.
Physiol Mol Biol Plants ; 30(2): 153-166, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38623162

RESUMO

Leguminosae is one of the three largest families of angiosperms after Compositae and Orchidaceae. It is widely distributed and grows in a variety of environments, including plains, mountains, deserts, forests, grasslands, and even waters where almost all legumes can be found. It is one of the most important sources of starch, protein and oil in the food of mankind and also an important source of high-quality forage material for animals, which has important economic significance. In our study, the codon usage patterns and variation sources of the chloroplast genome of nine important forage legumes were systematically analyzed. Meanwhile, we also constructed a phylogenetic tree based on the whole chloroplast genomes and protein coding sequences of these nine forage legumes. Our results showed that the chloroplast genomes of nine forage legumes end with A/T bases, and seven identical high-frequency (HF) codons were detected among the nine forage legumes. ENC-GC3s mapping, PR2 analysis, and neutral analysis showed that the codon bias of nine forage legumes was influenced by many factors, among which natural selection was the main influencing factor. The codon usage frequency showed that the Nicotiana tabacum and Saccharomyces cerevisiae can be considered as receptors for the exogenous expression of chloroplast genes of these nine forage legumes. The phylogenetic relationships of the chloroplast genomes and protein coding genes were highly similar, and the nine forage legumes were divided into three major clades. Among the clades Melilotus officinalis was more closely related to Medicago sativa, and Galega officinalis was more closely related to Galega orientalis. This study provides a scientific basis for the molecular markers research, species identification and phylogenetic studies of forage legumes. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01421-0.

6.
Front Endocrinol (Lausanne) ; 15: 1343255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681772

RESUMO

Stem cell-based therapies exhibit considerable promise in the treatment of diabetes and its complications. Extensive research has been dedicated to elucidate the characteristics and potential applications of adipose-derived stromal/stem cells (ASCs). Three-dimensional (3D) culture, characterized by rapid advancements, holds promise for efficacious treatment of diabetes and its complications. Notably, 3D cultured ASCs manifest enhanced cellular properties and functions compared to traditional monolayer-culture. In this review, the factors influencing the biological functions of ASCs during culture are summarized. Additionally, the effects of 3D cultured techniques on cellular properties compared to two-dimensional culture is described. Furthermore, the therapeutic potential of 3D cultured ASCs in diabetes and its complications are discussed to provide insights for future research.


Assuntos
Tecido Adiposo , Diabetes Mellitus , Humanos , Tecido Adiposo/citologia , Diabetes Mellitus/terapia , Animais , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Complicações do Diabetes/terapia , Diferenciação Celular , Técnicas de Cultura de Células em Três Dimensões/métodos
7.
Water Res ; 256: 121602, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621315

RESUMO

Emerging microplastics-heavy metal (MPs-HM) contaminants in wastewaters pose an emerging health and environmental risk due to their persistence and increasing ecological risks (e.g., "Trojan horse" effect). Hence, removing MPs in solution and preventing secondary releases of HM has become a key challenge when tackling with MPs pollution. Leveraging the hydrophobic nature of MPs and the electron transfer efficiency from Fe0 to HM, we demonstrate an alkylated and sulfidated nanoscale zerovalent iron (AS-nZVI) featuring a delicate "core-shell-hydrophobic film" nanostructure. Exemplified by polystyrene (PS) MPs-Pb(II) removal, the three nanocomponents offer synergistic functions for the rapid separation of MPs, as well as the reduction and stabilization of Pb(II). The outmost hydrophobic film of AS-nZVI greatly improves the anticorrosion performance of nanoscale zerovalent iron and the enrichment abilities of hydrophobic MPs, achieving a maximum removal capacity of MPs to 2725.87 mgMPs·gFe-1. This MPs enrichment promotes the subsequent reductive removal of Pb(II) through the electron transfer from the iron core of AS-nZVI to Pb(II), a process further strengthened by the introduced sulfur. When considering the inevitable aging of MPs in wastewaters due to mechanical wear or microbial degradation, our study concurrently examines the efficiencies and behaviors of AS-nZVI in removing virgin-MPs-Pb(II) and aged-MPs-Pb(II). The batch results reveal that AS-nZVI has an exceptional ability to remove above 99.6 % Pb(II) for all reaction systems. Overall, this work marks a pioneering effort in highlighting the importance of MPs-toxin combinations in dealing with MPs contamination and in demonstrating the utility of nZVI techniques for MPs-contaminated water purification.


Assuntos
Ferro , Microplásticos , Poliestirenos , Poluentes Químicos da Água , Ferro/química , Poliestirenos/química , Poluentes Químicos da Água/química , Microplásticos/química , Molhabilidade , Metais Pesados/química , Transporte de Elétrons
8.
Heliyon ; 10(7): e29347, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617920

RESUMO

Background: Seldom have the associations of preoperative CEA (p-CEA) and recurrent CEA (r-CEA) levels as well as changes in p-CEA and r-CEA with survival in patients with stage I-III colorectal cancer (CRC) who have experienced metastatic relapse, been thoroughly examined. Methods: 241 consecutive patients with stage I-III CRC who experienced metastatic relapse at Fudan University Shanghai Cancer Center (FUSCC) between January 2008 and January 2016 were investigated. The influence of p-CEA, r-CEA and CEA alteration on the overall survival (OS) and relapse-to-death survival (RDS) was evaluated. The restricted cubic spline regression model was employed to explore the optimal cut-off value of CEA. Results: All 241 patients were categorized into four groups built on their CEA alteration patterns as follows: A, patients presenting elevated p-CEA levels but normal r-CEA levels (P-N); B, patients displaying normal levels of both p-CEA and r-CEA (N-N); C, patients exhibiting elevated levels of both p-CEA and r-CEA (P-P); D, patients with normal p-CEA levels but elevated r-CEA levels (N-P). The correlation between p-CEA and OS (P = 0.3266) and RDS (P = 0.2263) was insignificant. However, r-CEA exhibited a significant association with both OS (P = 0.0005) and RDS (P = 0.0002). Group A demonstrated the longest OS and RDS, whereas group D exhibited the poorest OS and RDS outcomes. For both OS and RDS, the CEA alteration groups served as an independent prognostic indicator. The optimal cut-off threshold for CEA was determined to be 5.1 ng/ml via the restricted cubic spline regression model. Conclusion: r-CEA has a stronger correlation with OS and RDS in individuals with stage I-III CRC who have experienced metastatic relapse.The change between p-CEA and r-CEA could further indicate post-relapse survival, thereby facilitating the assessment of mortality risk stratification in stage I-III CRC patients experiencing metastatic relapse.

9.
Int J Surg ; 110(5): 2776-2787, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38445460

RESUMO

BACKGROUND: Approximately 60% of patients with colorectal liver metastases (CRLM) experience relapse within 2 years after radical resection, previous studies have proven that repeat local treatment (LT) could prolong survival, however, it is difficult to seize the window for LT due to the lack of a high-sensitive surveillance method. In this study, the authors aim to examine the value of longitudinal circulating tumor DNA (ctDNA) in guiding adjuvant chemotherapy, optimizing clinical surveillance strategy, and thereby improving CRLM outcomes. MATERIALS AND METHODS: The authors conducted a prospective clinical trial using a personalized, tumor-informed ctDNA assay to monitor 60 CRLM patients undergoing resection with curative intent. Formalin-fixed paraffin-embedded tumor samples were collected after surgery. Blood samples were collected before surgery, 30 days after surgery (post-OP), and every third month until relapse or up to 2 years. RESULTS: A total of 394 plasma samples from 60 eligible patients were analyzed, with a median follow-up time of 31.3 months. Landmark analyses revealed that detectable ctDNA at post-OP (HR, 4.8), postadjuvant chemotherapy (HR, 6.0), and end-of-treatment (HR, 5.6) were associated with higher recurrence risk ( P <0.001). Post-OP ctDNA positivity served as the only independent prognostic marker in the multivariant analysis (HR, 5.1; P <0.001). Longitudinal ctDNA analysis identified relapsed patients at both sensitivity and specificity of 100%. Most (75%) patients were found with radiological relapse within 6 months after the first detectable ctDNA with a median lead time of 3.5 months. In relapsed patients, 73.2% had oligometastatic disease and 61% were liver-restricted, of which 72.0% received repeat LTs, and 60.0% achieved a secondary no evidence of disease status. CONCLUSIONS: Longitudinal ctDNA monitoring assists in early prediction of relapse, and thereby improves survival of CRLM patients by increased secondary resection rate and secondary no evidence of disease rate.


Assuntos
DNA Tumoral Circulante , Neoplasias Colorretais , Neoplasias Hepáticas , Recidiva Local de Neoplasia , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/sangue , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Estudos Prospectivos , Masculino , Feminino , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/cirurgia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/diagnóstico , Idoso , Adulto , Hepatectomia , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Estudos de Coortes
10.
Life Sci ; 342: 122538, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428571

RESUMO

Pulmonary disorders, including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), pulmonary hypertension (PH), and lung cancer, seriously impair the quality of lives of patients. A deeper understanding of the occurrence and development of the above diseases may inspire new strategies to remedy the scarcity of treatments. Type I protein arginine methyltransferases (PRMTs) can affect processes of inflammation, airway remodeling, fibroblast proliferation, mitochondrial mass, and epithelial dysfunction through substrate methylation and non-enzymatic activity, thus affecting the occurrence and development of asthma, COPD, lung cancer, PF, and PH. As potential therapeutic targets, inhibitors of type I PRMTs are developed, moreover, representative compounds such as GSK3368715 and MS023 have also been used for early research. Here, we collated structures of type I PRMTs inhibitors and compared their activity. Finally, we highlighted the physiological and pathological associations of type I PRMTs with asthma, COPD, lung cancer, PF, and PH. The developing of type I PRMTs modulators will be beneficial for the treatment of these diseases.


Assuntos
Asma , Hipertensão Pulmonar , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Fibrose Pulmonar , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Asma/patologia
11.
Small ; : e2310694, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545993

RESUMO

The exploration of electrocatalysts toward oxygen reduction reaction (ORR) is pivotal in the development of diverse batteries and fuel cells that rely on ORR. Here, a FeCo-N-C electrocatalyst (FeCo-HNC) featuring with atomically dispersed dual metal sites (Fe-Co) and hollow cubic structure is reported, which exhibits high activity for electrocatalysis of ORR in alkaline electrolyte, as evidenced by a half-wave potential of 0.907 V, outperforming that of the commercial Pt/C catalyst. The practicality of such FeCo-HNC catalyst is demonstrated by integrating it as the cathode catalyst into an alkaline aluminum-air battery (AAB) paring with an aluminum plate serving as the anode. This AAB demonstrates an unprecedented power density of 804 mW cm-2 in ambient air and an impressive 1200 mW cm-2 in an oxygen-rich environment. These results not only establish a new benchmark but also set a groundbreaking record for the highest power density among all AABs reported to date. Moreover, they stand shoulder to shoulder with state-of-the-art H2-O2 fuel cells. This AAB exhibits robust stability with continuous operation for an impressive 200 h. This groundbreaking achievement underscores the immense potential and forward strides that the present work brings to the field.

12.
Front Endocrinol (Lausanne) ; 15: 1292346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332892

RESUMO

Objective: Insulin plays a central role in the regulation of energy and glucose homeostasis, and insulin resistance (IR) is widely considered as the "common soil" of a cluster of cardiometabolic disorders. Assessment of insulin sensitivity is very important in preventing and treating IR-related disease. This study aims to develop and validate machine learning (ML)-augmented algorithms for insulin sensitivity assessment in the community and primary care settings. Methods: We analyzed the data of 9358 participants over 40 years old who participated in the population-based cohort of the Hubei center of the REACTION study (Risk Evaluation of Cancers in Chinese Diabetic Individuals). Three non-ensemble algorithms and four ensemble algorithms were used to develop the models with 70 non-laboratory variables for the community and 87 (70 non-laboratory and 17 laboratory) variables for the primary care settings to screen the classifier of the state-of-the-art. The models with the best performance were further streamlined using top-ranked 5, 8, 10, 13, 15, and 20 features. Performances of these ML models were evaluated using the area under the receiver operating characteristic curve (AUROC), the area under the precision-recall curve (AUPR), and the Brier score. The Shapley additive explanation (SHAP) analysis was employed to evaluate the importance of features and interpret the models. Results: The LightGBM models developed for the community (AUROC 0.794, AUPR 0.575, Brier score 0.145) and primary care settings (AUROC 0.867, AUPR 0.705, Brier score 0.119) achieved higher performance than the models constructed by the other six algorithms. The streamlined LightGBM models for the community (AUROC 0.791, AUPR 0.563, Brier score 0.146) and primary care settings (AUROC 0.863, AUPR 0.692, Brier score 0.124) using the 20 top-ranked variables also showed excellent performance. SHAP analysis indicated that the top-ranked features included fasting plasma glucose (FPG), waist circumference (WC), body mass index (BMI), triglycerides (TG), gender, waist-to-height ratio (WHtR), the number of daughters born, resting pulse rate (RPR), etc. Conclusion: The ML models using the LightGBM algorithm are efficient to predict insulin sensitivity in the community and primary care settings accurately and might potentially become an efficient and practical tool for insulin sensitivity assessment in these settings.


Assuntos
Resistência à Insulina , Humanos , Adulto , Insulina , Aprendizado de Máquina , Algoritmos , China/epidemiologia , Atenção Primária à Saúde
13.
Ecotoxicol Environ Saf ; 272: 116058, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301583

RESUMO

Homoyessotoxin (homo-YTX) and nitrite (NO2-N), released during harmful dinoflagellate cell lysis adversely affect abalones. However, their toxicity mechanisms in shellfish remain unclear. This study investigated the economic abalone species Haliotis discus hannai exposed to varying concentrations of homo-YTX (0, 2, 5, and 10 µg L-1) and NO2-N (0, 3, and 6 mg L-1) on the basis of their 12 h LC50 values (5.05 µg L-1 and 4.25 mg L-1, respectively) and the environmentally relevant dissolved concentrations during severe dinoflagellate blooms, including mixtures. The test abalones were exposed to homo-YTX and NO2-N for 12 h. The mortality rate (D), reactive oxygen species (ROS) levels, antioxidant defense capabilities, and expression levels of antioxidant-related, Hsp-related, and apoptosis-related genes in abalone gills were assessed. Results showed that the combined exposure to homo-YTX and NO2-N increased the D and ROS levels and upregulated B-cell lymphoma-2 (BCL2)-associated X (BAX) and caspase3 (CASP3) expression levels while reducing glutathione peroxidase (GPx) activity and GPx, CuZnSOD, and BCL2 expression levels. High concentrations of homo-YTX (10 µg L-1) and NO2-N (6 mg L-1) solutions and the combinations of these toxicants inhibited the activities of superoxide dismutase (SOD) and catalase (CAT) and downregulated the expression levels of MnSOD, CAT, Hsp70, and Hsp90. The ROS levels were negatively correlated with the activities of SOD, CAT, and GPx and the expression levels of MnSOD, CuZnSOD, CAT, GPx, Hsp70, Hsp90, and BCL2. These results suggest that homo-YTX, in conjunction with NO2-N, induces oxidative stress, disrupts antioxidant defense systems, and triggers caspase-dependent apoptosis in the gills of abalone. ROS-mediated antioxidative and heat-shock responses and apoptosis emerge as potential toxicity mechanisms affecting the survival of H. discus hannai due to homo-YTX and NO2-N exposure.


Assuntos
Antioxidantes , Gastrópodes , Animais , Antioxidantes/metabolismo , Nitritos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Nitrogênio , Superóxido Dismutase/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Gastrópodes/genética , Gastrópodes/metabolismo
14.
Leukemia ; 38(5): 1057-1071, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424136

RESUMO

Most forms of chemotherapy for acute myeloid leukemia (AML) are often ineffective in eliminating leukemic stem cells (LSCs), as their underlying mechanisms remain unclear. Here, we have identified circFAM193B, which regulates the redox biology of LSCs and is associated with unfavorable outcomes in AML patients. In vitro and in vivo assays suggested that circFAM193B significantly inhibits LSCs chemotherapy resistance and AML progression. Knockdown circFAM193B enhances mitochondrial OXPHOS function and inhibits the accumulation of reactive oxygen species and lipid peroxidation mediated by chemotherapy, which protects AML cells from oxidative stress-induced cell death. Mechanistically, circFAM193B physically interacts with arginine methyltransferase PRMT6 catalytic domain and enhances the transcription efficiency of key lipid peroxidation factor ALOX15 by decreasing H3R2me2a modification. In summary, we have identified circFAM193B was downregulated in LSCs to promote the survival of LSC by modulating energy metabolism and the redox balance in the postchemotherapy persistence of LSC. Our studies provide a conceptual advance and biological insights regarding the drug resistance of LSCs via circRNA mediated PRMT6-deposited methylarginine signaling.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Peroxidação de Lipídeos , Células-Tronco Neoplásicas , Proteínas Nucleares , Proteína-Arginina N-Metiltransferases , Humanos , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Camundongos , Animais , Estresse Oxidativo , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo
15.
Fitoterapia ; 174: 105840, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296167

RESUMO

The phytochemical investigation of the aerial parts of Isodon japonica var. glaucocalyx afforded four undescribed (glaucocalyxin O-R, 1-4) and six known ent-kauranoids (5-10). Their structures were established using NMR and MS measurements. Compounds 1 and 2 are dimeric ent-kaurane-type diterpenoids. Moreover, the plausible biogenetic pathways for compounds 1 and 2 were proposed as Michael addition between two monomers. Eight compounds were assayed for their anti-inflammatory activity by evaluating NO production in LPS-induced RAW 267.4 cells, and compounds 7, 8 and 9 exhibited relatively remarkable anti-inflammatory activities at 10 µM.


Assuntos
Antineoplásicos Fitogênicos , Diterpenos do Tipo Caurano , Diterpenos , Isodon , Isodon/química , Estrutura Molecular , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/química , Diterpenos/química , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais
16.
Free Radic Biol Med ; 213: 36-51, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215892

RESUMO

Short-chain fatty acids (SCFAs), particularly propionate and butyrate, have been reported in many cancers. However, the relationship between propionate and acute myeloid leukemia (AML) remains unclear. Additionally, Acyl-CoA synthetase long chain family member 4 (ACSL4) has been reported to regulate immunity in solid tumors, but there are still many gaps to be filled in AML. Here, we discovered the underlying mechanism of propionate and ACSL4-mediated ferroptosis for immunotherapy. Our results showed that the level of propionate in the AML patients' feces was decreased, which was correlated to gut microbiota dysbiosis. Moreover, we demonstrated that propionate suppressed AML progression both in vivo and in vitro. In mechanism, propionate induced AML cells apoptosis and ferroptosis. The imbalance of reactive oxygen species (ROS) and redox homeostasis induced by propionate caused mitochondrial fission and mitophagy, which enhanced ferroptosis and apoptosis. Furthermore, ACSL4-mediated ferroptosis caused by propionate increased the immunogenicity of AML cells, induced the release of damage-associated molecular patterns (DAMPs), and promoted the maturation of dendritic cells (DCs). The increased level of immunogenicity due to ferroptosis enable propionate-based whole-cell vaccines to activate immunity, thus further facilitating effective killing of AML cells. Collectively, our study uncovers a crucial role for propionate suppresses AML progression by inducing ferroptosis and the potential mechanisms of ACSL4-mediated ferroptosis in the regulation of AML immunity.


Assuntos
Ferroptose , Leucemia Mieloide Aguda , Humanos , Propionatos/farmacologia , Mitofagia , Apoptose , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia
17.
Psychiatry Clin Neurosci ; 78(3): 197-208, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38063052

RESUMO

BACKGROUNDS: Anti-N-methyl-D-aspartate receptor encephalitis (NMDAR-E) is a severe autoimmune disorder characterized by prominent psychiatric symptoms. Although the role of NMDAR antibodies in the disease has been extensively studied, the phenotype of B cell subsets is still not fully understood. METHODS: We utilized single-cell RNA sequencing, single-cell B cell receptor sequencing (scBCR-seq), bulk BCR sequencing, flow cytometry, and enzyme-linked immunosorbent assay to analyze samples from both NMDAR-E patients and control individuals. RESULTS: The cerebrospinal fluid (CSF) of NMDAR-E patients showed significantly increased B cell counts, predominantly memory B (Bm) cells. CSF Bm cells in NMDAR-E patients exhibited upregulated expression of differential expression genes (DEGs) associated with immune regulatory function (TNFRSF13B and ITGB1), whereas peripheral B cells upregulated DEGs related to antigen presentation. Additionally, NMDAR-E patients displayed higher levels of IgD- CD27- double negative (DN) cells and DN3 cells in peripheral blood (PB). In vitro, DN1 cell subsets from NMDAR-E patients differentiated into DN2 and DN3 cells, while CD27+ and/or IgD+ B cells (non-DN) differentiated into antibody-secreting cells (ASCs) and DN cells. NR1-IgG antibodies were found in B cell culture supernatants from patients. Differential expression of B cell IGHV genes in CSF and PB of NMDAR-E patients suggests potential antigen class switching. CONCLUSION: B cell subpopulations in the CSF and PB of NMDAR-E patients exhibit distinct compositions and transcriptomic features. In vitro, non-DN cells from NMDAR-E can differentiate into DN cells and ASCs, potentially producing NR1-IgG antibodies. Further research is necessary to investigate the potential contribution of DN cell subpopulations to NR1-IgG antibody production.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Humanos , Encefalite Antirreceptor de N-Metil-D-Aspartato/complicações , Imunoglobulina G/líquido cefalorraquidiano , Receptores de N-Metil-D-Aspartato/genética , Fenótipo , Análise de Sequência de RNA
18.
Eur J Med Chem ; 264: 115943, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039793

RESUMO

PARP-1 is a crucial factor in repairing DNA single strand damage and maintaining genomic stability. However, the use of PARP-1 inhibitors is limited to combination with chemotherapy or radiotherapy, or as a single agent for indications carrying HRR defects. The ubiquitin-proteasome system processes the majority of cellular proteins and is the principal manner by which cells regulate protein homeostasis. Proteasome inhibitors can cooperate with PARP-1 inhibitors to inhibit DNA homologous recombination repair function. In this study, we designed and synthesized the first dual PARP-1 and proteasome inhibitor based on Olaparib and Ixazomib. Both compounds 42d and 42i exhibited excellent proliferation inhibition and dual-target synergistic effects on cells that were insensitive to PARP-1 inhibitors. Further mechanistic evaluations revealed that 42d and 42i could inhibit homologous recombination repair function by down-regulating the expression of BRCA1 and RAD51. Additionally, 42i induced more significant apoptosis and showed better inhibitory effect on cell proliferation in clonal formation experiments in breast cancer cells than 42d. In summary, our study presented a new class of dual PARP-1/proteasome inhibitors with significant synergistic effects for the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Proteassoma/farmacologia , Neoplasias da Mama/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma , Linhagem Celular Tumoral , DNA , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico
19.
Acta Pharmacol Sin ; 45(4): 765-776, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110583

RESUMO

Hypertensive renal disease (HRD) contributes to the progression of kidney dysfunction and ultimately leads to end-stage renal disease. Understanding the mechanisms underlying HRD is critical for the development of therapeutic strategies. Deubiquitinating enzymes (DUBs) have been recently highlighted in renal pathophysiology. In this study, we investigated the role of a DUB, OTU Domain-Containing Protein 1 (OTUD1), in HRD models. HRD was induced in wild-type or Otud1 knockout mice by chronic infusion of angiotensin II (Ang II, 1 µg/kg per min) through a micro-osmotic pump for 4 weeks. We found that OTUD1 expression levels were significantly elevated in the kidney tissues of Ang II-treated mice. Otud1 knockout significantly ameliorated Ang II-induced HRD, whereas OTUD1 overexpression exacerbated Ang II-induced kidney damage and fibrosis. Similar results were observed in TCMK-1 cells but not in SV40 MES-13 cells following Ang II (1 µM) treatment. In Ang II-challenged TCMK-1 cells, we demonstrated that OTUD1 bound to CDK9 and induced CDK9 deubiquitination: OTUD1 catalyzed K63 deubiquitination on CDK9 with its Cys320 playing a critical role, promoting CDK9 phosphorylation and activation to induce inflammatory responses and fibrosis in kidney epithelial cells. Administration of a CDK9 inhibitor NVP-2 significantly ameliorated Ang II-induced HRD in mice. This study demonstrates that OTUD1 mediates HRD by targeting CDK9 in kidney epithelial cells, suggesting OTUD1 is a potential target in treating this disease.


Assuntos
Hipertensão Renal , Rim , Nefrite , Proteases Específicas de Ubiquitina , Animais , Camundongos , Angiotensina II/metabolismo , Células Epiteliais/metabolismo , Fibrose , Hipertensão Renal/enzimologia , Hipertensão Renal/patologia , Rim/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nefrite/enzimologia , Nefrite/patologia , Proteases Específicas de Ubiquitina/metabolismo , Modelos Animais de Doenças
20.
Biochem Biophys Res Commun ; 694: 149388, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38150917

RESUMO

Despite progress in the application of checkpoint immunotherapy against various tumors, attempts to utilize immune checkpoint blockade (ICB) agents in triple negative breast cancer (TNBC) have yielded limited clinical benefits. The low overall response rate of checkpoint immunotherapy in TNBC may be attributed to the immunosuppressive tumor microenvironment (TME). In this study, we investigated the role of mitogen-associated kinase TTK in reprogramming immune microenvironment in TNBC. Notably, TTK inhibition by BAY-1217389 induced DNA damage and the formation of micronuclei containing dsDNA in the cytosol, resulting in elicition of STING signal pathway and promoted antitumor immunity via the infiltration and activation of CD8+ T cells. Moreover, TTK inhibition also upregulated the expression of PD-L1, demonstrating a synergistic effect with anti-PD1 therapy in 4T1 tumor-bearing mice. Taken together, TTK inhibition facilitated anti-tumor immunity mediated by T cells and enhanced sensitivity to PD-1 blockade, providing a rationale for the combining TTK inhibitors with immune checkpoint blockade in clinical trials.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Antígeno B7-H1 , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA