Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802584

RESUMO

Hepatitis C Virus (HCV) is the key cause of chronic and severe liver diseases. The recent direct-acting antiviral agents have shown the clinical success on HCV-related diseases, but the rapid HCV mutations of the virus highlight the sustaining necessity to develop new drugs. p7, the viroporin protein from HCV, has been sought after as a potential anti-HCV drug target. Several classes of compounds, such as amantadine and rimantadine have been testified for p7 inhibition. However, the efficacies of these compounds are not high. Here, we screened some novel p7 inhibitors with amantadine scaffold for the inhibitor development. The dissociation constant (Kd) of 42 ARD-series compounds were determined by nuclear magnetic resonance (NMR) titrations. The efficacies of the two best inhibitors, ARD87 and ARD112, were further confirmed using viral production assay. The binding mode analysis and binding stability for the strongest inhibitor were deciphered by molecular dynamics (MD) simulation. These ARD-series compounds together with 49 previously published compounds were further analyzed by molecular docking. Key pharmacophores were identified among the structure-similar compounds. Our studies suggest that different functional groups are highly correlated with the efficacy for inhibiting p7 of HCV, in which hydrophobic interactions are the dominant forces for the inhibition potency. Our findings provide guiding principles for designing higher affinity inhibitors of p7 as potential anti-HCV drug candidates.


Assuntos
Antivirais/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Desenvolvimento de Medicamentos , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Antivirais/química , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Proliferação de Células , Hepacivirus/isolamento & purificação , Hepatite C/complicações , Hepatite C/virologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Simulação de Acoplamento Molecular , Células Tumorais Cultivadas
2.
Sci Adv ; 7(2)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523994

RESUMO

Hepatitis C virus (HCV) remains a major human pathogen that requires better understanding of virus-host interactions. In this study, we performed a genome-wide CRISPR-Cas9 screening and identified TRIM26, an E3 ligase, as a critical HCV host factor. Deficiency of TRIM26 specifically impairs HCV genome replication. Mechanistic studies showed that TRIM26 interacts with HCV-encoded NS5B protein and mediates its K27-linked ubiquitination at residue K51, and thus promotes the NS5B-NS5A interaction. Moreover, mouse TRIM26 does not support HCV replication because of its unique six-amino acid insert that prevents its interaction with NS5B. Ectopic expression of human TRIM26 in a mouse hepatoma cell line that has been reconstituted with other essential HCV host factors promotes HCV infection. In conclusion, we identified TRIM26 as a host factor for HCV replication and a new determinant of host tropism. These results shed light on HCV-host interactions and may facilitate the development of an HCV animal model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA