Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 14(11): 5921-5931, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38021116

RESUMO

Autoantibodies against New York esophageal squamous cell cancer 1 (NY-ESO-1) play a crucial role in the diagnosis of esophageal cancer. In this work, a surface plasmonic tilted fiber Bragg grating (TFBG) biosensor is proposed for the detection of NY-ESO-1 antibody, as well as the investigation of the hook effect (which refers to the false negative result in some immunoassays when the concentration of antibodies in the sample is very high) during biomolecular binding between NY-ESO-1 antigen and antibody. The biosensor is made by an 18° TFBG coated with a 50-nm-thick gold film over the fiber surface together with NY-ESO-1 antigens attached to the metallic surface serving as bio-receptors. This biosensor can provide a limit of detection at a concentration of 2 × 10-7 µg/ml with a good linearity in the range from 2 × 10-7 to 2 × 10-5 µg/ml. For a concentration higher than 2 × 10-3 µg/ml, the performance of the sensor probe is reduced owing to the hook effect. Furthermore, experimental results have also demonstrated the repeatability of the proposed biosensor. This proposed biosensor features label-free, compactness, and fast response, which could be potentially applied in the diagnosis of esophageal cancer.

2.
Front Oncol ; 12: 882900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965555

RESUMO

Objectives: At present, esophageal squamous cell carcinoma (ESCC) patients accepting neoadjuvant chemoradiotherapy (nCRT) plus surgery lack corresponding prognostic indicators. This study aimed to construct a prognostic prediction model for ESCC patients undergoing nCRT and surgery based on immune and inflammation-related indicators. Methods: We retrospectively analyzed the levels of serum immune- and inflammation-related indicators of ESCC patients before receiving nCRT plus surgery in the training cohort (99 patients) and validation cohort (67 patients), which were collected from 2007 to 2020. Univariate and multivariate Cox survival analyses were conducted to evaluate the indicators to set up a nomogram associated with the patients' overall survival (OS). The prediction accuracy and discriminative ability of the nomogram were measured by the concordance index (C-index), decision curve, calibration curve, integrated discrimination improvement (IDI), and net reclassification improvement (NRI). Results: Univariate and multivariate Cox analyses demonstrated that immune globin A (IgA) and C-reactive protein (CRP) were independent risk factors. A nomogram based on IgA, CRP, and cTNM stage was established for predicted OS in the training cohort and validated in the validation cohort. The C-index of the nomogram was 0.820 (95% CI: 0.705-0.934), which was higher than that of the cTNM stage (0.655 (95% CI: 0.546-0.764), p < 0.05) in the training cohort, and similar results were observed in the validation cohort (0.832 (95% CI: 0.760-0.903 vs 0.635 (95% CI: 0.509-0.757), p < 0.001). Furthermore, the prediction accuracy and net benefit of the nomogram verified by the calibration curve, decision curve, NRI, and IDI were satisfactory in the training and validation cohorts. Conclusion: The newly constructed nomogram concluding serum IgA, CRP, and cTNM stage might be helpful in the prognosis prediction for ESCC patients receiving nCRT plus surgery.

3.
Biomed Opt Express ; 13(4): 2117-2129, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519261

RESUMO

The detection of circulating tumor cells (CTCs) still faces a huge challenge partially because of low abundance of CTCs (1-10 cells/mL). In this work, a plasmonic titled fiber Bragg grating biosensor is proposed for detection of breast cancer cells. The biosensor is made by an 18° TFBG with a 50 nm-thick gold nanofilm coating over the surface of the fiber, further immobilized with a specific antibody against GPR30, which is a membrane receptor expressed in many breast cancers, serving as bait. In vitro tests have confirmed that the proposed biosensor can detect breast cancer cells in concentration of 5 cells/mL within 20 minutes and has good linearity in the range of 5-1000 cells/mL, which has met the requirement of CTC detection in real conditions. Furthermore, theoretical analysis based on the experimental results shows that the limit of detection can even reach single-cell level. Our proposed biosensor has a simple structure, is easy to manufacture, is of small size, and has a good performance, making it a good choice for real-time, label-free, and milliliter-volume detection of cancer cells in future.

4.
Sensors (Basel) ; 21(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34770253

RESUMO

Soil moisture measurement is very important for soil system monitoring. Compared to the traditional thermo-gravimetric technique, which is time-consuming and can be only performed in labs, the optic-fiber technique has unique advantages, such as small size, remote application in fields, fast response time and immunity to electromagnetic fields. In this paper, the soil moisture is measured by using a polymer optical fiber Bragg grating (POFBG) probe with a packaged dimension of 40 mm × 15 mm × 8 mm. Due to the intrinsic water-absorbing property of poly (methyl methacrylate) (PMMA), optical fiber Bragg gratings based on PMMA have been widely investigated for humidity measurement. Taking advantage of this, a sensor based on the POFBG is investigated to verify the soil condition. The POFBG is protectively integrated inside a stainless-steel package. A window is opened with a thin polypropylene mat as a filter, which allows the air to go through but prevents the soil from going inside to pollute the POFBG. The sensor probe is embedded in soils with different gravimetric soil moisture contents (SMCs) ranging from 0% to 40% and, then, insulated by polyethylene films to minimize the impact from the external environment, showing an average temperature cross sensitivity of -0.080 nm/°C. For a constant temperature, an exponential relationship between the Bragg wavelength and the SMC is obtained. For the SMCs between 8% and 24%, linear relationships are presented showing a temperature-corresponded sensitivity between 0.011 nm/% and 0.018 nm/%. The maximal sensitivity is calculated to be 0.018 nm/% at 20 °C, which is 28 times as high as that in the previous work. For the SMC over 24%, the sensor becomes insensitive because of humidity saturation in the cavity of the sensor probe. Though temperature cross sensitivity is problematic for SMC measurement, the influence could be eliminated by integrating another humidity-insensitive temperature sensor, such as a silica FBG temperature sensor.


Assuntos
Polimetil Metacrilato , Água , Umidade , Solo , Temperatura
5.
Sensors (Basel) ; 20(4)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098108

RESUMO

In this paper, we report a capillary-based Mach-Zehnder (M-Z) interferometer that could be used for precise detection of variations in refractive indices of gaseous samples. The sensing mechanism is quite straightforward. Cladding and core modes of a capillary are simultaneously excited by coupling coherent laser beams to the capillary cladding and core, respectively. An interferogram would be generated as the light transmitted from the core interferes with the light transmitted from the cladding. Variations in the refractive index of the air filling the core lead to variations in the phase difference between the core and cladding modes, thus shifting the interference fringes. Using a photodiode together with a narrow slit, we could interrogate the fringe shifts. The resolution of the sensor was found to be ~5.7 × 10-8 RIU (refractive index unit), which is comparable to the highest resolution obtained by other interferometric sensors reported in previous studies. Finally, we also analyze the temperature cross sensitivity of the sensor. The main goal of this paper is to demonstrate that the ultra-sensitive sensing of gas refractive index could be realized by simply using a single capillary fiber rather than some complex fiber-optic devices such as photonic crystal fibers or other fiber-optic devices fabricated via tricky fiber processing techniques. This capillary sensor, while featuring an ultrahigh resolution, has many other advantages such as simple structure, ease of fabrication, straightforward sensing principle, and low cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA