Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 2): 118920, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657849

RESUMO

Long-term wastewater irrigation leads to the loss of calcium carbonate (CaCO3) in the tillage layer of calcareous land, which irreversibly damages the soil's ability to retain cadmium (Cd). In this study, we selected calcareous agricultural soil irrigated with wastewater for over 50 years to examine the recalcification effects of sugar beet factory lime (SBFL) at doses of 0%, 2.5%, 5%, and 10%. We found that SBFL promoted Cd transformation in the soil from active exchangeable species to more stable carbonate-bonded and residual species, which the X-ray diffraction patterns also confirmed results that CdSO4 reduced while CdS and CaCdCO3 increased. Correspondingly, the soil bioavailable Cd concentration was significantly reduced by 65.6-84.7%. The Cd concentrations in maize roots and shoots were significantly reduced by 11.7-50.6% and 13.0-70.0%, respectively, thereby promoting maize growth. Nevertheless, SBFL also increased the proportion of plant-unavailable phosphorus (P) in Ca8-P and Ca10-P by 4.3-13.0% and 10.7-25.9%, respectively, reducing the plant-available P (Olsen P) content by 5.2-22.1%. Consequently, soil P-acquiring associated enzyme (alkaline phosphatase) activity and microbial (Proteobacteria, Bacteroidota, and Actinobacteria) community abundance significantly increased. Our findings showed that adding SBFL to wastewater-irrigated calcareous soil stabilized Cd, but exacerbated P limitation. Therefore, it is necessary to alleviate P limitations in the practice of recalcifying degraded calcareous land.

2.
Environ Res ; 248: 118393, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309564

RESUMO

Soil solution pH and dissolved organic carbon (DOC) influence cadmium (Cd) uptake by hyperaccumulators but their tradeoff in calcareous soils is unclear. This study investigated the mechanisms of Solanum nigrum L. and Solanum alatum Moench in calcareous soil using a combination of concentration gradient experiments (0.6-100 mg Cd kg-1) and soil solution composition analysis. The results showed that the soil solution pH of S. nigrum remained stable despite Cd stress. On average, the soil solution pH of S. alatum was 0.23 units higher than that of S. nigrum, although pH decreased significantly under high Cd stress. In addition, the concentrations of potassium (K) and calcium (Ca) in the soil solution of S. nigrum increased and decreased under low and high levels of Cd stress, respectively. In S. alatum, the K and Ca concentrations in the soil solution generally increased with increasing Cd stress levels. Moreover, the level of DOC in the soil solution of both plants was higher under Cd stress compared to the control, and a gradually increasing trend with Cd stress level was observed in S. alatum. Consequently, the bioconcentration factors of the roots (2.62-19.35) and shoots (1.20-9.59) of both plants were >1, while the translocation factors were <1, showing an obstacle of Solanum hyperaccumulators in transferring Cd into their aboveground parts. Redundancy analysis revealed that the Cd concentration in S. nigrum roots was significantly negatively correlated with the soil solutions of K and Ca. In contrast, Cd concentrations in S. alatum roots and shoots were significantly positively correlated with soil solution DOC, K, and Ca but negatively correlated with pH. Our results suggest that calcareous soil neutralizes the acidity of released protons but does not affect cation exchange, inhibiting DOC in assisting the translocation of Cd within plants.


Assuntos
Poluentes do Solo , Solanum nigrum , Solanum , Cádmio/análise , Matéria Orgânica Dissolvida , Solo/química , Biodegradação Ambiental , Poluentes do Solo/análise , Minerais/análise , Íons/análise , Raízes de Plantas/química , Cálcio/análise , Concentração de Íons de Hidrogênio
3.
J Hazard Mater ; 424(Pt A): 127224, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34583157

RESUMO

Screening and cultivating crop varieties with low Cd accumulation is an effective way to safely utilize the Cd slightly contaminated soil. The characteristics and mechanism of Cd uptake by 13 wheat varieties in two calcareous soils with similar Cd contamination level but different P supply level were studied. The grain Cd concentration of almost all varieties in low-P soil was significantly higher than that in high-P soil and exceeded the maximum level of 0.2 mg kg-1 recommended by the Codex Alimentarius Commission. The pH value of low-P soil was significantly lower than that of high-P soil by 0.27 units, while leaf [Mn] (proxy for rhizosphere carboxylates) and the activities of soil alkaline phosphatase and phytase were significantly higher than those of high-P soil by 35%, 55%, and 286%, respectively. The exchangeable Cd concentration in low-P soil was 2.93 times higher than that in high-P soil, while the Cd concentration of oxides and organic species was significantly lower than that in high-P soil by 21% and 64%, respectively, collectively increasing soluble Cd concentration in low-P soil by 38%. In low-P calcareous soil, P mobilization induced the change of root-zone microenvironment, resulting in the mobilization of Cd.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Fósforo , Solo , Poluentes do Solo/análise , Triticum
4.
Chemosphere ; 263: 127971, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297027

RESUMO

Calcareous soil has a strong buffering capacity for neutralizing acid and stabilizing cadmium (Cd) because of the high calcium carbonate (CaCO3) content. However, it is not clear whether the buffering capacity of calcareous soil can be maintained after long-term wastewater irrigation. We selected a typical area in western China that has been irrigated with wastewater for over 50 years to study the temporal changes of soil properties and their effects on Cd uptake by wheat. The results showed that compared with the background level before the 1960s, the soil pH and CaCO3 content in 2018 were lower by 0.80 units and 35%, respectively, while the soil organic matter (SOM) content, Olsen phosphorus (P) content, and soil total Cd content in 2018 increased by 1.54, 13.05, and 164 times, respectively. Due to the significant decrease in the soil pH and CaCO3, the high load of soil total Cd and electrical conductivity, the low soil clay content, and the coupling of SOM with soil nitrogen and P, the input Cd was activated. Furthermore, the activated Cd was effectively taken up by wheat roots and transported to grains with the assistance of dissolved organic carbon. Our results highlight that long-term wastewater irrigation caused irreversible damage to soil buffering capacity, resulting in the Cd activation and the enhancement of Cd uptake by wheat.


Assuntos
Poluentes do Solo , Solo , Cádmio/análise , China , Poluentes do Solo/análise , Triticum , Águas Residuárias/análise
5.
Int J Phytoremediation ; 16(5): 482-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24912230

RESUMO

To investigate the phytoextraction potential of Populus alba L. var. pyramidalis Bunge for cadmium (Cd) contaminated calcareous soils, a concentration gradient experiment and a field sampling experiment (involving poplars of different ages) were conducted. The translocation factors for all experiments and treatments were greater than 1. The bioconcentration factor decreased from 2.37 to 0.25 with increasing soil Cd concentration in the concentration gradient experiment and generally decreased with stand age under field conditions. The Cd concentrations in P. pyramidalis organs decreased in the order of leaves > stems > roots. The shoot biomass production in the concentration gradient experiment was not significantly reduced with soil Cd concentrations up to or slightly over 50 mg kg(-1). The results show that the phytoextraction efficiency of P. pyramidalis depends on both the soil Cd concentration and the tree age. Populus pyramidalis is most suitable for remediation of slightly Cd contaminated calcareous soils through the combined harvest of stems and leaves under actual field conditions.


Assuntos
Cádmio/metabolismo , Populus/metabolismo , Poluentes do Solo/metabolismo , Agricultura , Biodegradação Ambiental , Biomassa , Cádmio/análise , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Caules de Planta/metabolismo , Solo/química , Poluentes do Solo/análise , Especificidade da Espécie
6.
Int J Phytoremediation ; 13(8): 818-33, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21972521

RESUMO

A well-characterized cadmium (Cd) hyperaccumulating plant Solanum nigrum was grown in Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil that was repeatedly amended with chemicals, including EDTA, cysteine (CY), salicylic acid (Sa), and Tween 80 (TW80), to test individual and combined treatment effects on phytoremediation of Cd-PAHs contaminated soils. Plant growth was negatively affected by exogenous chemicals except for EDTA. S. nigrum could accumulate Cd in tissues without assistant chemicals, while there was no visible effect on the degradation of PAHs. Cysteine had significant effects on phytoextraction of Cd and the highest metal extraction ratio (1.27%) was observed in 0.9 mmol/kg CY treatment. Both salicylic acid and Tween 80 had stimulative effects on the degradation of PAHs and there was the maximal degradation rate (52.6%) of total PAHs while 0.9 mmol/kg Sa was applied. Furthermore, the combined treatment T(0.1EDTA+0.9CY+0.5TW80) and T(0.5EDTA+0.9CY+03Sa) could not only increase the accumulation of Cd in plant tissues, but also promote the degradation of PAHs. These results indicated that S. nigrum might be effective in phytoextracting Cd and enhancing the biodegradation of PAHs in the co-contaminated soils with assistant chemicals.


Assuntos
Cádmio/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Solanum nigrum/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Cádmio/análise , Quelantes/farmacologia , Cisteína/farmacologia , Ácido Edético/farmacologia , Poluição Ambiental , Flores/química , Flores/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Polissorbatos/farmacologia , Ácido Salicílico/farmacologia , Solo/análise , Poluentes do Solo/análise , Solanum nigrum/efeitos dos fármacos , Solanum nigrum/crescimento & desenvolvimento , Tensoativos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA