Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Eur J Med Chem ; 261: 115792, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37690265

RESUMO

Glucose-regulated protein 78 (GRP78) is one of key endoplasmic reticulum (ER) chaperone proteins that regulates the unfolded protein response (UPR) to maintain ER homeostasis. As a core factor in the regulation of the UPR, GRP78 takes a critical part in the cellular processes required for tumorigenesis, such as proliferation, metastasis, anti-apoptosis, immune escape and chemoresistance. Overexpression of GRP78 is closely correlated with tumorigenesis and poor prognosis in various malignant tumors. Targeting GRP78 is regarded as a potentially promising therapeutic strategy for cancer therapy. Although none of the GRP78 inhibitors have been approved to date, there have been several studies of GRP78 inhibitors. Herein, we comprehensively review the structure, physiological functions of GRP78 and the recent progress of GRP78 inhibitors, and discuss the structures, in vitro and in vivo efficacies, and merits and demerits of these inhibitors to inspire further research. Additionally, the feasibility of GRP78-targeting proteolysis-targeting chimeras (PROTACs), disrupting GRP78 cochaperone interactions, or covalent inhibition are also discussed as novel strategies for drugs discovery targeting GRP78, with the hope that these strategies can provide new opportunities for targeted GRP78 antitumor therapy.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico , Humanos , Proteínas de Choque Térmico/metabolismo , Estresse do Retículo Endoplasmático , Peptídeos , Carcinogênese
2.
Biogerontology ; 24(5): 813-827, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36738354

RESUMO

SARS-Cov-2 infection, which has caused the COVID-19 global pandemic, triggers cellular senescence. In this study, we investigate the role of the SARS-COV-2 spike protein (S-protein) in regulating the senescence of RPE cells. The results showed that administration or overexpression of S-protein in ARPE-19 decreased cell proliferation with cell cycle arrest at the G1 phase. S-protein increased SA-ß-Gal positive ARPE-19 cells with high expression of P53 and P21, senescence-associated inflammatory factors (e.g., IL-1ß, IL-6, IL-8, ICAM, and VEGF), and ROS. Elimination of ROS by N-acetyl cysteine (NAC) or knocking down p21 by siRNA diminished S-protein-induced ARPE cell senescence. Both administrated and overexpressed S-protein colocalize with the ER and upregulate ER-stress-associated BIP, CHOP, ATF3, and ATF6 expression. S-protein induced P65 protein nuclear translocation. Inhibition of NF-κB by bay-11-7082 reduced S-protein-mediated expression of senescence-associated factors. Moreover, the intravitreal injection of S-protein upregulates senescence-associated inflammatory factors in the zebrafish retina. In conclusions, the S-protein of SARS-Cov-2 induces cellular senescence of ARPE-19 cells in vitro and the expression of senescence-associated cytokines in zebrafish retina in vivo likely by activating ER stress, ROS, and NF-κb. These results may uncover a potential association between SARS-cov-2 infection and development of AMD.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra , SARS-CoV-2/metabolismo , Senescência Celular/fisiologia
3.
FASEB J ; 37(2): e22783, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36705056

RESUMO

Capsular residual lens epithelial cells (CRLEC) undergo differentiation to fiber cells for lens regeneration or tansdifferentiation to myofibroblasts leading to posterior capsular opacification (PCO) after cataract surgery. The underlying regulatory mechanism remains unclear. Using human lens epithelial cell lines and the ex vivo cultured rat lens capsular bag model, we found that the lens epithelial cells secrete HSP90α extracellularly (eHSP90) through an autophagy-associated pathway. Administration of recombinant GST-HSP90α protein or its M-domain induces the elongation of rat CRLEC cells with concomitant upregulation of the crucial fiber cell transcriptional factor PROX1and its downstream targets, ß- and γ-crystallins and structure proteins. This regulation is abolished by PROX1 siRNA. GST-HSP90α upregulates PROX1 by binding to LRP1 and activating LRP1-AKT mediated YAP degradation. The upregulation of GST-HSP90α on PROX1 expression and CRLEC cell elongation is inhibited by LRP1 and AKT inhibitors, but activated by YAP-1 inhibitor (VP). These data demonstrated that the capsular residue epithelial cells upregulate and secrete eHSP90α, which in turn drive the differentiation of lens epithelial cell to fiber cells. The recombinant HSP90α protein is a potential novel differentiation regulator during lens regeneration.


Assuntos
Cristalino , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diferenciação Celular , Cristalino/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Epiteliais/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(4): 166645, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36682603

RESUMO

Retinal photoreceptors execute phototransduction functions and require an efficient system for the transport of materials (e.g. proteins and lipids) from inner segments to outer segments. Cytoplasmic dynein 1 is a minus-end-directed microtubule motor and participates in cargo transport in the cytoplasm. However, the roles of dynein 1 motor in photoreceptor cargo transport and retinal development are still ambiguous. In our present study, the light intermediate chain protein DLIC1 (encoded by dync1li1), links activating adaptors to bind diverse cargos in the dynein 1 motor, was depleted using CRISPR-Cas9 technology in zebrafish. The dync1li1-/- zebrafish displayed progressive degeneration of retinal cone photoreceptors, especially blue cones. The retinal rods were not affected in dync1li1-/- zebrafish. Knockout of DLIC1 resulted in abnormal expression and localization of cone opsins in dync1li1-/- retinas. TUNEL staining suggested that apoptosis was induced after aberrant accumulation of cone opsins in photoreceptors of dync1li1-/- zebrafish. Instead of Rab11 transport, Rab8 transport was disturbed in dync1li1-/- retinas. Our data demonstrate that DLIC1 is required for function maintenance and survival of cone photoreceptors, and hint at an essential role of the cytoplasmic dynein 1 motor in photoreceptor cargo transport.


Assuntos
Opsinas dos Cones , Dineínas do Citoplasma , Células Fotorreceptoras Retinianas Cones , Animais , Opsinas dos Cones/metabolismo , Dineínas do Citoplasma/genética , Dineínas do Citoplasma/metabolismo , Dineínas/genética , Dineínas/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
J Gastroenterol Hepatol ; 38(1): 138-152, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36300571

RESUMO

BACKGROUND AND AIM: Liver cancer stem cells (LCSCs) cause therapeutic refractoriness and relapse in hepatocellular carcinoma. Heat shock factor 1 (HSF1) plays versatile roles in multiple cancers. However, the role of HSF1 in LCSCs is not well understood. This study investigated the function and signal mechanisms of HSF1 in maintaining LCSC phenotypes. METHODS: We established two LCSC lines, HepG2-R and HuH-7-R. Constitutive activation of HSF1 was observed in these LCSCs. Specific short hairpin RNAs (shRNAs) and chemical inhibitors were used to identify the relationship between HSF1 expression and LCSCs phenotypes. RESULTS: We revealed a concomitant activation modality involving HSF1 and STAT3 in LCSCs and liver cancer tissues. We also found that liver cancer patients whose HSF1 and STAT3 mRNA expression levels were high presented with unfavorable clinicopathological characteristics. Moreover, the secretion of interleukin-8 (IL-8) was elevated in the LCSC medium and was directly regulated by HSF1 at the transcriptional level. In turn, IL-8 activated HSF1 and STAT3 signaling, and a neutralizing IL-8 antibody inhibited HSF1 and STAT3 activity, reduced cancer stem cell marker expression, and decreased LCSC microsphere formation. Simultaneous intervention with HSF1 and STAT3 led to synergistically suppressed stemness acquisition and growth suppression in the LCSCs in vivo and in vitro. CONCLUSIONS: Our study indicates that IL-8 mediates the crosstalk between the HSF1 and Stat3 signaling pathways in LCSCs and that the combined targeting of HSF1 and STAT3 is a promising treatment strategy for patients with advanced liver cancer.


Assuntos
Fatores de Transcrição de Choque Térmico , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Fator de Transcrição STAT3 , Humanos , Comunicação Autócrina , Linhagem Celular Tumoral , Fatores de Transcrição de Choque Térmico/metabolismo , Interleucina-8/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
6.
Exp Eye Res ; 220: 109110, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569519

RESUMO

Retinitis pigmentosa (RP) is the most common inherited retinal degenerative disease which is the major cause of vision loss. X-linked RP patients account for 5%-15% of all inherited RP cases and mutations in RP2 (Retinitis pigmentosa 2) were responsible for about 20% X-linked RP families. A majority of RP2 pathogenic mutations displayed a vulnerable protein stability and degraded rapidly through ubiquitin-proteasome system (UPS). Though the RP2 protein could be readily recovered by proteasome inhibitors, e.g., MG132, their applications for RP2-related RP therapy were limited by their nonspecific characterization. In the present study, we aimed to identify UPS-related factors, such as E3 ligases, which are specifically involved in degradation of RP2 pathogenic mutants. We identified several E3 ligases, such as HUWE1, and the co-chaperon BAG6 specifically interacting with RP2 pathogenic mutants. Knockdown of HUWE1 and BAG6 could partially rescue the reduced protein levels of RP2 mutants. BAG6 is required for recruitment of HUWE1 to ubiquitinate RP2 mutants at the K268 site. The HUWE1 inhibitor BI8622 could restore the levels of RP2 mutant and then the binding to its partner ARL3 in retina cell lines. This study revealed the details of UPS-related degradation of RP2 mutants and possibly provided a potential treatment for RP2-related RP.


Assuntos
Proteínas do Olho , Retinose Pigmentar , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligases/metabolismo , Proteínas de Membrana/genética , Chaperonas Moleculares/metabolismo , Retinose Pigmentar/patologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética
7.
Invest Ophthalmol Vis Sci ; 63(2): 30, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35201262

RESUMO

Purpose: The purpose of this study was to explore the therapeutic role of heat shock protein 90 (Hsp90) in wound healing of injury cornea epithelium. Methods: The right eye of C57BL/6N male mice were performed the debridement wounds in the center of the cornea using an algerbrush II blade. The injured area was determined by staining the cornea with fluorescein sodium and measured with image-J. Immunoblotting, ELISA and immunochemistry were used for determining protein expression. The quantitation PCR was performed to measure mRNA expression. Results: Hsp90α is upregulated at both the mRNA and protein levels, and is secreted extracellularly into the corneal stroma and tear film during the healing process after corneal injury in mice. This upregulation is associated with activation of HSF1. Administration of recombinant exogenous Hsp90α (eHsp90α) speeds up wound healing of injured corneal epithelium. The eHsp90α binds to low-density lipoprotein (LDL)-related protein-1 (LRP-1) on the corneal epithelial cells and increases phosphorylation of AKT at S473, which is associated with proliferation and migration corneal epithelial cells in vitro or vivo. Inhibition of AKT by its inhibitor LY294002 abolishes eHsp90α-induced migration and proliferation of corneal epithelial cells. Conclusion: Hsp90α is upregulated and secreted after corneal injury and acts to promote the healing process. Recombinant Hsp90α may be a promising therapeutic drug candidate for corneal injury.


Assuntos
Epitélio Corneano/lesões , Traumatismos Oculares/tratamento farmacológico , Proteínas de Choque Térmico HSP90/uso terapêutico , Cicatrização/efeitos dos fármacos , Animais , Western Blotting , Linhagem Celular , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Desbridamento , Ensaio de Imunoadsorção Enzimática , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Traumatismos Oculares/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico HSP90/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Imuno-Histoquímica , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico
8.
Aging (Albany NY) ; 13(17): 21547-21570, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34495872

RESUMO

The senescence of retinal pigment epithelial (RPE) cells is associated with age-related macular degeneration (AMD), a leading cause of blindness in the world. HSP90 is a predominant chaperone that regulates cellular homeostasis under divergent physio-pathological conditions including senescence. However, the role of HSP90 in senescent RPE cells still remains unclear. Here, we reported that HSP90 acts as a senomorphic target of senescent RPE cells in vitro. Using H2O2-induced senescent ARPE-19 cells and replicative senescent primary RPE cells from rhesus monkey, we found that HSP90 upregulates the expression of IKKα, and HIF1α in senescent ARPE-19 cells and subsequently controls the induction of distinct senescence-associated inflammatory factors. Senescent ARPE-19 cells are more resistant to the cytotoxic HSP90 inhibitor IPI504 (IC50 = 36.78 µM) when compared to normal ARPE-19 cells (IC50 = 6.16 µM). Administration of IPI504 at 0.5-5 µM can significantly inhibit the induction of IL-1ß, IL-6, IL-8, MCP-1 and VEGFA in senescent ARPE-19 and the senescence-mediated migration of retinal capillary endothelial cells in vitro. In addition, we found that inhibition of HSP90 by IPI504 reduces SA-ß-Gal's protein expression and enzyme activity in a dose-dependent manner. HSP90 interacts with and regulates SA-ß-Gal protein stabilization in senescent ARPE-19 cells. Taken together, these results suggest that HSP90 regulates the SASP and SA-ß-Gal activity in senescent RPE cells through associating with distinctive mechanism including NF-κB, HIF1α and lysosomal SA-ß-Gal. HSP90 inhibitors (e.g. IPI504) could be a promising senomorphic drug candidate for AMD intervention.


Assuntos
Benzoquinonas/administração & dosagem , Senescência Celular , Proteínas de Choque Térmico HSP90/metabolismo , Lactamas Macrocíclicas/administração & dosagem , Epitélio Pigmentado da Retina/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Citocininas/metabolismo , Células Epiteliais/metabolismo , Humanos , Peróxido de Hidrogênio , Macaca mulatta , Degeneração Macular/etiologia , Degeneração Macular/patologia , Retina/patologia , Epitélio Pigmentado da Retina/patologia , Senoterapia
9.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166233, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34339841

RESUMO

Genetic mutations in heat shock factor 4 (Hsf4) is associated with both congenital and age-related cataracts. Hsf4 regulates lens development through its ability to both activate and inhibit transcription. Previous studies suggested Hsf4 is involved in modulating cellular senescence depending on p21cip1 and p27 kip1 expression in MEF cells. Here, we found that Hsf4 acts as a suppressor of p21cip1 expression and plays an anti-senescence role during lens development. Knocking out Hsf4 facilitated UVB-induced cellular senescence in mouse lens epithelial cells (mLECs). p21cip1 was upregulated at both the mRNA and protein levels in HSF4-/- mLECs under control and UVB-treated conditions, and knockdown of p21cip1 by siRNA alleviated UVB-induced cellular senescence. HSF4 directly bound to the p21cip1 promoter and increased H3K27m3 levels at the p21cip1 proximal promoter region by recruiting the methyltransferase EZH2. In animal models, p21cip1 was gradually upregulated in wild-type mouse lenses with increasing age, while Hsf4 levels decreased. We generated a Hsf4 mutant mice line (Hsf4del-42) which displayed obvious congenital cataract phenotype. The expression of p21cip1 and senescence-associated cytokines were induced in the cataractous lenses of Hsf4del-42 mice. H3K27m3 and EZH2 levels decreased in p21cip1 promoters in the lenses of Hsf4del-42 mice. The SA-ß-Gal activities were positive in lens epithelia of aged Hsf4null zebrafish compared to wild-type lenses. p21cip1 and senescence-associated cytokines levels were also upregulated in lenses of Hsf4null zebrafish. Accordingly, we propose that HSF4 plays a protective role in lens epithelial cells against cellular senescence during lens development and aging, partly by fine-tuning p21cip1 expression.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Fatores de Transcrição de Choque Térmico/deficiência , Cristalino/patologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Envelhecimento/genética , Animais , Animais Geneticamente Modificados , Catarata/genética , Catarata/patologia , Linhagem Celular , Senescência Celular/genética , Senescência Celular/efeitos da radiação , Metilação de DNA , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Fatores de Transcrição de Choque Térmico/genética , Histonas/genética , Histonas/metabolismo , Humanos , Cristalino/citologia , Cristalino/crescimento & desenvolvimento , Cristalino/efeitos da radiação , Camundongos , Regiões Promotoras Genéticas , Raios Ultravioleta/efeitos adversos , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
10.
BMC Biotechnol ; 21(1): 39, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34126963

RESUMO

BACKGROUND: HSPB5 is an ATP-independent molecular chaperone that is induced by heat shock or other proteotoxic stresses. HSPB5 is cytoprotective against stress both intracellularly and extracellularly. It acts as a potential therapeutic candidate in ischemia-reperfusion and neurodegenerative diseases. RESULTS: In this paper, we constructed a recombinant plasmid that expresses and extracellularly secrets a HSPB5-Fc fusion protein (sHSPB5-Fc) at 0.42 µg/ml in CHO-K1 cells. This sHSPB5-Fc protein contains a Fc-tag at the C-terminal extension of HSPB5, facilitating protein-affinity purification. Our study shows that sHSPB5-Fc inhibits heat-induced aggregation of citrate synthase in a time and dose dependent manner in vitro. Administration of sHSPB5-Fc protects lens epithelial cells against cisplatin- or UVB-induced cell apoptosis. It also decreases GFP-Httex1-Q74 insolubility, and reduces the size and cytotoxicity of GFP-Httex1-Q74 aggregates in PC-12 cells. CONCLUSION: This recombinant sHSPB5-Fc exhibits chaperone activity to protect cells against proteotoxicity.


Assuntos
Substâncias Protetoras/farmacologia , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Células CHO , Cricetinae , Cricetulus , Citoproteção , Células Epiteliais/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Substâncias Protetoras/química , Substâncias Protetoras/metabolismo , Agregados Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Cadeia B de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/metabolismo
11.
Sci Transl Med ; 12(540)2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321866

RESUMO

Myocardial infarction (MI) is a leading cause of death worldwide for which there is no cure. Although cardiac cell death is a well-recognized pathological mechanism of MI, therapeutic blockade of cell death to treat MI is not straightforward. Death receptor 5 (DR5) and its ligand TRAIL [tumor necrosis factor (TNF)-related apoptosis-inducing ligand] are up-regulated in MI, but their roles in pathological remodeling are unknown. Here, we report that blocking TRAIL with a soluble DR5 immunoglobulin fusion protein diminished MI by preventing cardiac cell death and inflammation in rats, pigs, and monkeys. Mechanistically, TRAIL induced the death of cardiomyocytes and recruited and activated leukocytes, directly and indirectly causing cardiac injury. Transcriptome profiling revealed increased expression of inflammatory cytokines in infarcted heart tissue, which was markedly reduced by TRAIL blockade. Together, our findings indicate that TRAIL mediates MI directly by targeting cardiomyocytes and indirectly by affecting myeloid cells, supporting TRAIL blockade as a potential therapeutic strategy for treating MI.


Assuntos
Infarto do Miocárdio , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Animais , Apoptose , Linhagem Celular Tumoral , Haplorrinos , Infarto do Miocárdio/tratamento farmacológico , Ratos , Suínos , Ligante Indutor de Apoptose Relacionado a TNF
12.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165724, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061775

RESUMO

Removal of nuclei in lens fiber cells is required for organelle-free zone (OFZ) formation during lens development. Defect in degradation of nuclear DNA leads to cataract formation. DNase2ß degrades nuclear DNA of lens fiber cells during lens differentiation in mouse. Hsf4 is the principal heat shock transcription factor in lens and facilitates the lens differentiation. Knockout of Hsf4 in mouse and zebrafish resulted in lens developmental defect that was characterized by retaining of nuclei in lens fiber cells. In previous in vitro studies, we found that Hsf4 promoted DNase2ß expression in human and mouse lens epithelial cells. In this study, it was found that, instead of DNase2ß, DNase1l1l is uniquely expressed in zebrafish lens and was absent in Hsf4-/- zebrafish lens. Using CRISPR-Cas9 technology, a DNase1l1l knockout zebrafish line was constructed, which developed cataract. Deletion of DNase1l1l totally abrogated lens primary and secondary fiber cell denucleation process, whereas had little effect on the clearance of other organelles. The transcriptional regulation of DNase1l1l was dramatically impaired in Hsf4-/- zebrafish lens. Rescue of DNase1l1l mRNA into Hsf4-/- zebrafish embryos alleviated its defect in lens fiber cell denucleation. Our results in vivo demonstrated that DNase1l1l is the primary DNase responsible for nuclear DNA degradation in lens fiber cells, and Hsf4 can transcriptionally activate DNase1l1l expression in zebrafish.


Assuntos
Catarata/genética , Desoxirribonucleases/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição de Choque Térmico/metabolismo , Cristalino/embriologia , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Catarata/patologia , Núcleo Celular/metabolismo , Desoxirribonucleases/metabolismo , Modelos Animais de Doenças , Embrião não Mamífero , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Técnicas de Inativação de Genes , Fatores de Transcrição de Choque Térmico/genética , Humanos , Cristalino/citologia , Cristalino/metabolismo , Cristalino/patologia , Masculino , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
13.
Biochim Biophys Acta Gen Subj ; 1864(3): 129496, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31786107

RESUMO

BACKGROUND: Germline mutations in heat shock factor 4 (HSF4) cause congenital cataracts. Previously, we have shown that HSF4 is involved in regulating lysosomal pH in mouse lens epithelial cell in vitro. However, the underlying mechanism remains unclear. METHODS: HSF4-deficient mouse lens epithelial cell lines and zebrafish were used in this study. Immunoblotting and quantitative RT-PCR were used for expression analysis. The protein-protein interactions were tested with GST-pull downs. The lysosomes were fractioned by ultracentrifugation. RESULTS: HSF4 deficiency or knock down of αB-crystallin elevates lysosomal pH and increases the ubiquitination and degradation of ATP6V1A by the proteasome. αB-crystallin localizes partially in the lysosome and interacts solely with the ATP6V1A protein of the V1 complex of V-ATPase. Furthermore, αB-crystallin can co-precipitate with mTORC1 and ATP6V1A in GST pull down assays. Inhibition of mTORC1 by rapamycin or siRNA can lead to dissociation of αB-crystallin from the ATP6V1A and mTORC1complex, shortening the half-life of ATP6V1A and increasing the lysosomal pH. Mutation of ATP6V1A/S441A (the predicted mTOR phosphorylation site) reduces its association with αB-crystallin. In the zebrafish model, HSF4 deficiency reduces αB-crystallin expression and elevates the lysosomal pH in lens tissues. CONCLUSION: HSF4 regulates lysosomal acidification by controlling the association of αB-crystallin with ATP6V1A and mTOR and regulating ATP6V1A protein stabilization. GENERAL SIGNIFICANCE: This study uncovers a novel function of αB-crystallin, demonstrating that αB-crystallin can regulate lysosomal ATP6V1A protein stabilization by complexing to ATP6V1A and mTOR. This highlights a novel mechanism by which HSF4 regulates the proteolytic process of organelles during lens development.


Assuntos
Fatores de Transcrição de Choque Térmico/metabolismo , Lisossomos/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Animais , Linhagem Celular , Cristalinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Humanos , Cristalino/metabolismo , Lisossomos/fisiologia , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação , ATPases Vacuolares Próton-Translocadoras/metabolismo , Peixe-Zebra/metabolismo
14.
Exp Eye Res ; 189: 107821, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31589841

RESUMO

Posterior capsule opacification (PCO) is a common complication of cataract surgery, resulting from a combination of proliferation, migration, epithelial-mesenchymal transition (EMT) of residual capsular epithelial cells and fibrosis of myofibroblasts. HSP90 is known to regulate the proteostasis of cells under pathophysiological conditions. The role of HSP90 in PCO formation, however, is not clear. To do this, the lens epithelial cell lines and an ex vivo cultured rat capsular bag model were used to study the role of HSP90 in PCO formation. The expression of protein and mRNA was measured by immunoblotting and quantitative RT-PCR, and cell apoptosis was measured by TUNEL(TdT-mediated dUTP nick-end labeling). The cell proliferation was measured by cell viability assays. The results showed that 17-AAG (Tanespimycin), an inhibitor of HSP90, suppresses the proliferation of immortalized lens epithelial cell lines HLE-B3, SRA01/04, and mLEC, with IC50 values of 0.27, 0.27, and 0.49 µM, respectively. In an ex vivo cultured rat capsular model, the capsular residual epithelial cells resisted the stress of the capsulorhexis surgery and took 3-6 days to completely overlay the capsular posterior wall. During this process, heat shock factor 1 and its downstream targets HSP90, HSP25, αB-crystallin, and HSP40 were upregulated. Treatment with 17-AAG inhibited the viability of capsular residual epithelial cells and induced the cells apoptosis, characterized by increases in ROS levels, apoptotic DNA injury, and the activation of caspases 9 and 3. HSP90 participated in regulating both EGF receptor (EGFR) and TGF receptor (TGFR) signaling pathways. HSP90 was found to interact with the EGFR, such that inhibition of HSP90 by 17-AAG destabilized the EGFR protein and suppressed p-ERK1/2 and p-AKT levels. 17-AAG also inhibited the TGF-ß-induced phosphorylation of SMAD2/3 and ERK1/2 and the decrease in E-cadherin and ZO-1 expression. Accordingly, these data suggest that the induction of HSP90 protects capsular residual epithelial cells against capsulorhexis-induced stress and participates in regulating the processes of proliferation, EMT and migration of rat capsular residual epithelial cells, at least partly, through the EGFR and TGFR signaling pathways. Treatment with 17-AAG suppresses PCO formation and is therefore a potential therapeutic candidate for PCO prevention.


Assuntos
Benzoquinonas/farmacologia , Opacificação da Cápsula/tratamento farmacológico , Células Epiteliais/metabolismo , Proteínas de Choque Térmico HSP90/efeitos dos fármacos , Lactamas Macrocíclicas/farmacologia , Cápsula Posterior do Cristalino/metabolismo , Animais , Western Blotting , Opacificação da Cápsula/metabolismo , Opacificação da Cápsula/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Proteínas de Choque Térmico HSP90/metabolismo , Cápsula Posterior do Cristalino/patologia , Ratos , Ratos Wistar , Transdução de Sinais
15.
Gene ; 707: 86-92, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31071385

RESUMO

Retinitis pigmentosa (RP) is the most common form of inherited retinal degenerative diseases. X-linked RP accounts for nearly 15% of all RP cases. In this study, we identified a novel RP2 missense mutation Q158P in a Chinese XLRP family. The RP2 Q158P mutation located in the RP2 TBCC domain and obviously destabilized RP2 protein in ARPE-19 cells. The proteasome inhibitor MG132 could restore the RP2 Q158P protein levels. Meanwhile, lower doses of bortezomib and carfilzomib, another two proteasome inhibitors that have been approved in multiple myeloma clinical therapy, also could rescue the RP2 Q158P protein levels. The ubiquitination of RP2 Q158P protein obviously increased when compared with wild type RP2 protein. Our findings broadened the spectrum of RP2 mutations and may contribute a better understanding of the molecular mechanism of XLRP.


Assuntos
Proteínas do Olho/química , Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Retinose Pigmentar/genética , Linhagem Celular , China , Análise Mutacional de DNA , Feminino , Proteínas de Ligação ao GTP , Humanos , Masculino , Modelos Moleculares , Linhagem , Domínios Proteicos , Estabilidade Proteica , Análise de Sequência de DNA
16.
Int J Biochem Cell Biol ; 105: 61-69, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30316871

RESUMO

Dysfunction of HSF4 is associated with congenital cataracts. HSF4 transcription activity is turned on and regulated by phosphorylation during early postnatal lens development. Our previous data suggested that mutation HSF4b/S299A can upregulate HSF4 transcription activity in vitro, but the biological significance of posttranslational modification on HSF4/S299 during lens development remains unclear. Here, we found that the mutation HSF4/S299A can upregulate the expression of HSP25 and alpha B-crystallin at both protein and mRNA levels in mouse the lens epithelial cell line, but HSF4/S299D does not. Using the rabbit polyclonal antibody against phospho-S299 of HSF4, we found that EGF and ectopic expression of MEK1 can increase the phosphorylation of HSF4/S299 and induce HSF4 sumoylation, and these effects are inhibited by U0126. ERK1/2 can phosphorylate the S299 in HSF4/wt but not in HSF4/S299A in the in vitro kinase assay. Functionally, ectopic MEK1 can inhibit HSF4-controled alpha B-crystallin expression but has less effect on HSF4/S299A. EGF can upregulate phospho-HSF4/S299 and downregulate alpha B-crystallin expression in P3 mouse lens, and this downregulation is suppressed by U0126. During mouse lens development, phosphorylation of HSF4/S299 is downregulated in P3 lens and upregulated in P7 and P14 lens. However, in 2 months old lens, both phosphorylation of HSF4/S299 and total HSF4 protein are decreased. Interestingly, ERK1/2 activity is lower in P3 lens than in P7 and P14 lens, which is in line with the phosphorylation of HSF4/S299. Taken together, our data demonstrate that HSF4/299 is a phosphorylation target of MEK1-ERK1/2, and phosphorylation of S299 is responsible for tuning down HSF4 transcription activity during postnatal lens development.


Assuntos
Fatores de Transcrição de Choque Térmico/genética , Cristalino/metabolismo , Sistema de Sinalização das MAP Quinases , Substituição de Aminoácidos , Animais , Células Cultivadas , Regulação para Baixo , Técnicas de Inativação de Genes , Proteínas de Choque Térmico HSP27/genética , Fatores de Transcrição de Choque Térmico/química , Fatores de Transcrição de Choque Térmico/deficiência , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Cristalino/crescimento & desenvolvimento , Camundongos , Chaperonas Moleculares , Proteínas de Neoplasias/genética , Fosforilação , Mutação Puntual , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina/metabolismo , Transcrição Gênica , Regulação para Cima , Cadeia B de alfa-Cristalina/genética
17.
DNA Cell Biol ; 37(5): 449-456, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29489419

RESUMO

Mutations in GJA8 are associated with hereditary autosomal dominant and recessive cataract formation. In this study, a novel insert mutation in GJA8 was identified in a Chinese congenital cataract family and cosegregated with the disease in this pedigree. This insert mutation introduces five additional amino acid residues YAVHY after histidine at the 95 site (p.H95_A96insYAVHY) within the second transmembrane (TM2) domain of Cx50 protein (Cx50-insert). Ectopic expression of Cx50-insert protein impairs the hemichannel functions and gap junction activity compared to wild-type Cx50 protein in human lens epithelial cells. Cx50-insert proteins were mislocated from cytoplasmic membrane to endoplasmic reticulum and lysosome. In mouse lens tissue, our results showed that Cx50 predominant expresses in epithelial cells and fiber cells at the transition zone of lens hinting its roles in lens differentiation. Taken together, these data suggest that the novel insert mutation in the TM2 domain of Cx50 protein, which impairs its trafficking to the cell membrane and gap-junction function, is associated with the cataract formation in this Chinese pedigree.


Assuntos
Catarata/genética , Membrana Celular/metabolismo , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/genética , Mutagênese Insercional , Animais , Povo Asiático/genética , Catarata/congênito , Catarata/metabolismo , Células Cultivadas , Conexinas/química , Células Epiteliais/metabolismo , Família , Feminino , Junções Comunicantes/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linhagem , Domínios Proteicos/genética , Transporte Proteico/genética
18.
Cell Stress Chaperones ; 23(4): 571-579, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29164525

RESUMO

Heat shock factor 4 controls the transcription of small heat shock proteins (e.g., HSP25, alpha B-cyrstallin, and r-crystallin), that play important roles in modulating lens proteostasis. However, the molecular mechanism underlying HSF4-mediated transcription is still unclear. Using yeast two hybrid, we found that HSF4 interacts with the ATP-dependent DEXD/H-box RNA helicase UAP56, and their interaction in lens epithelial cell line was further confirmed by GST-pull down assay. UAP56 is a vital regulator of pre-mRNA splicing and mature mRNA nuclear export. The immunofluorescence assay showed that HSF4 and UBA56 co-localize with each other in the nucleus of lens epithelial cells. Ectopic UAP56 upregulated HSF4-controlled HSP25 and alpha B-crystallin proteins expression, while knocking down UAP56 by shRNA reversed it. Moreover, UAP56 interacts with and facilitates the nuclear exportation of HSP25 and alpha B-crystallin mRNA without impacting their total mRNA expression level. In lens tissues, both UAP56 and HSF4 are expressed in the same nucleus of lens fiber cells, and their expression levels are simultaneously reduced with fiber cell maturation. Taken together, these data suggested that UAP56 is a novel regulator of HSF4 and might upregulate HSF4's downstream mRNA maturation and nuclear exportation.


Assuntos
RNA Helicases DEAD-box/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Neoplasias/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Animais , Núcleo Celular/metabolismo , Células Epiteliais/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Cristalino/citologia , Camundongos , Chaperonas Moleculares , Proteínas de Neoplasias/genética , Ligação Proteica
19.
Int J Biochem Cell Biol ; 79: 118-127, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27586257

RESUMO

Activation of Heat shock factor 4-mediated heat shock response is closely associated with postnatal lens development. HSF4 controls the expression of small heat shock proteins (e.g. HSP25 and CRYAB) in lens epithelial cells. However, their roles in modulating lens epithelium homeostasis remain unclear. In this paper, we find that HSF4 is developmentally expressed in mouse lens epithelium and fiber tissue. HSF4 and alpha B-crystallin can selectively protect lens epithelial cells from cisplatin and H2O2 induced apoptosis by stabilizing mitochondrial membrane potential (ΔYm) and reducing ROS production. In addition, to our surprise, HSF4 is involved in upregulating lysosome activity. We found mLEC/HA-Hsf4 cells to have increased DLAD expression, lysosome acidity, cathepsin B activity, and degradation of plasmid DNA and GFP-LC3 protein when compared to mLEC/Hsf4-/- cells. Knocking down Cryab from mLEC/HA-Hsf4 cells inhibits HSF4-mediated lysosome acidification, while overexpression of CRYAB can upregulate cathepsin B activity in mLEC/Hsf4-/- cells. CRAYAB can interact with ATP6V1/A the A subunit of the H+ pump vacuolar ATPase, and is colocalized to lamp1 and lamp2 in the lysosome. Collectively, these results suggest that in addition to modulating anti-apoptosis, HSF4 is able to regulate lysosome activity by at least controlling alpha B-crystallin expression, shedding light on a novel molecular mechanism of HSF4 in regulating lens epithelial cell homeostasis.


Assuntos
Apoptose , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Homeostase , Cristalino/citologia , Lisossomos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células HEK293 , Fatores de Transcrição de Choque Térmico , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/química , Camundongos , Mitocôndrias/metabolismo , Regulação para Cima , Cadeia B de alfa-Cristalina/metabolismo
20.
Am J Physiol Renal Physiol ; 311(1): F94-F102, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194715

RESUMO

Cisplatin, a wildly used chemotherapy drug, induces nephrotoxicity that is characterized by renal tubular cell apoptosis. In response to toxicity, tubular cells can activate cytoprotective mechanisms, such as the heat shock response. However, the role and regulation of the heat shock response in cisplatin-induced nephrotoxicity remain largely unclear. In the present study, we demonstrated the induction of heat shock factor (Hsf)1 and the small heat shock protein crystallin-αB (CryAB) during cisplatin nephrotoxicity in mice. Consistently, cisplatin induced Hsf1 and CryAB in a cultured renal proximal tubular cells (RPTCs). RPTCs underwent apoptosis during cisplatin treatment, which was increased when Hsf1 was knocked down. Transfection or restoration of Hsf1 into Hsf1 knockdown cells suppressed cisplatin-induced apoptosis, further supporting a cytoprotective role of Hsf1 and its associated heat shock response. Moreover, Hsf1 knockdown increased Bax translocation to mitochondria and cytochrome c release into the cytosol. In RPTCs, Hsf1 knockdown led to a specific downregulation of CryAB. Transfection of CryAB into Hsf1 knockdown cells diminished their sensitivity to cisplatin-induced apoptosis, suggesting that CryAB may be a key mediator of the cytoprotective effect of Hsf1. Taken together, these results demonstrate a heat shock response in cisplatin nephrotoxicity that is mediated by Hsf1 and CryAB to protect tubular cells against apoptosis.


Assuntos
Antineoplásicos , Cisplatino , Cristalinas/biossíntese , Proteínas de Ligação a DNA/farmacologia , Proteínas de Ligação a DNA/uso terapêutico , Nefropatias/metabolismo , Nefropatias/prevenção & controle , Fatores de Transcrição/farmacologia , Fatores de Transcrição/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Fatores de Transcrição de Choque Térmico , Resposta ao Choque Térmico/efeitos dos fármacos , Nefropatias/induzido quimicamente , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Camundongos Endogâmicos C57BL , Transporte Proteico/efeitos dos fármacos , Ratos , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA