Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 164: 104048, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056530

RESUMO

Phenoloxidase (PO) catalyzed melanization and other insect immune responses are mediated by serine proteases (SPs) and their noncatalytic homologs (SPHs). Many of these SP-like proteins have a regulatory clip domain and are called CLIPs. In most insects studied so far, PO precursors are activated by a PAP (i.e., PPO activating protease) and its cofactor of clip-domain SPHs. Although melanotic encapsulation is a well-known refractory mechanism of mosquitoes against malaria parasites, it is unclear if a cofactor is required for PPO activation. In Anopheles gambiae, CLIPA4 is 1:1 orthologous to Manduca sexta SPH2; CLIPs A5-7, A12-14, A26, A31, A32, E6, and E7 are 11:4 orthologous to M. sexta SPH1a, 1b, 4, and 101, SPH2 partners in the cofactors. Here we produced proCLIPs A4, A6, A7Δ, A12, and activated them with CLIPB9 or M. sexta PAP3. A. gambiae PPO2 and PPO7 were expressed in Escherichia coli for use as PAP substrates. CLIPB9 was mutated to CLIPB9Xa by including a Factor Xa cleavage site. CLIPA7Δ was a deletion mutant with a low complexity region removed. After PAP3 or CLIPB9Xa processing, CLIPA4 formed a high Mr complex with CLIPA6, A7Δ or A12, which assisted PPO2 and PPO7 activation. High levels of specific PO activity (55-85 U/µg for PO2 and 1131-1630 U/µg for PO7) were detected in vitro, indicating that cofactor-assisted PPO activation also occurs in this species. The cleavage sites and mechanisms for complex formation and cofactor function are like those reported in M. sexta and Drosophila melanogaster. In conclusion, these data suggest that the three (and perhaps more) SPHI-II pairs may form cofactors for CLIPB9-mediated activation of PPOs for melanotic encapsulation in A. gambiae.


Assuntos
Anopheles , Manduca , Animais , Serina Proteases/metabolismo , Anopheles/metabolismo , Drosophila melanogaster/metabolismo , Serina Endopeptidases , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Monofenol Mono-Oxigenase , Manduca/metabolismo , Proteínas de Insetos/metabolismo , Hemolinfa
2.
Sci Total Environ ; 865: 161183, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36581278

RESUMO

Cadmium (Cd) is a widely distributed toxic heavy metal that enters the environment via anthropogenic mobilization and accumulates in plants and animals, causing metabolic abnormalities even mortality. Although the toxic effects and stress damage of cadmium have been investigated extensively over the past few decades, research on its ability to trigger ferroptosis, growth retardation, and behavioral abnormalities is insufficient. As a result, the effects of CdCl2 exposure on growth and development, activity and sleep, and ferroptosis in this study were examined in fruit fly (Drosophila melanogaster). When exposed to 0.5 mM CdCl2, the entire growth period from larvae to adults was prolonged, and the rates of pupation and eclosion were decreased. Additionally, CdCl2 exposure resulted in a decrease in body weight and individual size of fruit fly and high lethality rate. Moreover, CdCl2 exposure altered fruit fly behavior, including decreased activity and increased sleep duration, particularly in females. Ferrostatin-1 (Fer-1) is a potent selective ferroptosis inhibitor that effectively slows lipid hydroperoxide accumulation to rescue body size reduction and restore activity and sleep in CdCl2-exposed female flies. CdCl2 exposure could induce ferroptosis in fruit fly mechanistically, as evidenced by inhibition of Nrf2 signaling pathway, accumulation of lipid peroxidation, impairment of GPX4 antioxidant system, and upregulation of iron metabolism. Our findings suggest that Cd exposure triggers ferroptosis, which leads to growth retardation and behavioral disorders in fruit fly.


Assuntos
Cloreto de Cádmio , Ferroptose , Animais , Feminino , Cádmio/farmacologia , Cloretos , Drosophila , Drosophila melanogaster , Transtornos do Crescimento
3.
Insect Biochem Mol Biol ; 148: 103827, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36007680

RESUMO

Peptidoglycan recognition proteins (PGRPs) detect invading bacteria to trigger or modulate immune responses in insects. While these roles are established in Drosophila, functional studies are not yet achieved at the PGRP family level in other insects. To attain this goal, we selected Manduca sexta PGRP12 and five of the nine secreted PGRPs for recombinant expression and biochemical characterization. We cloned PGRP2-5, 12 and 13 cDNAs, produced the proteins in full (PGRP2-5, 13) or in part (PGRP3s, 12e, 13N, 13C) in Sf9 cells, and tested their bindings of two muramyl pentapeptides by surface plasmon resonance, two soluble peptidoglycans by competitive ELISA, and four insoluble peptidoglycans and eight whole bacteria by a pull-down assay. Preferential binding of meso-diaminopimelic acid-peptidoglycans (DAP-PGs) was observed in all the proteins containing a peptidoglycan binding domain and, since PGRP6, 7 and 9 proteins were hardly detected in cell-free hemolymph, the reportoire of PGRPs (including PGRP1 published previously) in M. sexta hemolymph is likely adapted to mainly detect Gram-negative bacteria and certain Gram-positive bacteria with DAP-PGs located on their surface. After incubation with plasma from naïve larvae, PGRP2, 3f, 4, 5, 13f and 13N considerably stimulated prophenoloxidase activation in the absence of a bacterial elicitor. PGRP3s and 12e had much smaller effects. Inclusion of the full-length PGRPs and their regions in the plasma also led to proHP8 activation, supporting their connections to the Toll pathway, since HP8 is a Spӓtzle-1 processing enzyme in M. sexta. Together, these findings raised concerns on the common belief that the Toll-pathway is specific for Gram-positive bacteria in insects.


Assuntos
Manduca , Animais , Proteínas de Transporte , Ácido Diaminopimélico/metabolismo , Drosophila/metabolismo , Hemolinfa/metabolismo , Proteínas de Insetos/metabolismo , Radioisótopos de Nitrogênio/metabolismo , Peptidoglicano/química
4.
Nat Commun ; 13(1): 1638, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347138

RESUMO

COVID-19 pathogen SARS-CoV-2 has infected hundreds of millions and caused over 5 million deaths to date. Although multiple vaccines are available, breakthrough infections occur especially by emerging variants. Effective therapeutic options such as monoclonal antibodies (mAbs) are still critical. Here, we report the development, cryo-EM structures, and functional analyses of mAbs that potently neutralize SARS-CoV-2 variants of concern. By high-throughput single cell sequencing of B cells from spike receptor binding domain (RBD) immunized animals, we identify two highly potent SARS-CoV-2 neutralizing mAb clones that have single-digit nanomolar affinity and low-picomolar avidity, and generate a bispecific antibody. Lead antibodies show strong inhibitory activity against historical SARS-CoV-2 and several emerging variants of concern. We solve several cryo-EM structures at ~3 Å resolution of these neutralizing antibodies in complex with prefusion spike trimer ectodomain, and reveal distinct epitopes, binding patterns, and conformations. The lead clones also show potent efficacy in vivo against authentic SARS-CoV-2 in both prophylactic and therapeutic settings. We also generate and characterize a humanized antibody to facilitate translation and drug development. The humanized clone also has strong potency against both the original virus and the B.1.617.2 Delta variant. These mAbs expand the repertoire of therapeutics against SARS-CoV-2 and emerging variants.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
5.
Mar Drugs ; 19(2)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498781

RESUMO

Macroalgae polysaccharides are phytochemicals that are beneficial to human health. In this study, response surface methodology was applied to optimize the extraction procedure of Pyropia yezoensis porphyran (PYP). The optimum extraction parameters were: 100 °C (temperature), 120 min (time), and 29.32 mL/g (liquid-solid ratio), and the maximum yield of PYP was 22.15 ± 0.55%. The physicochemical characteristics of PPYP, purified from PYP, were analyzed, along with its lipid-lowering effect, using HepG2 cells and Drosophila melanogaster larvae. PPYP was a ß-type sulfated hetero-rhamno-galactan-pyranose with a molecular weight of 151.6 kDa and a rhamnose-to-galactose molar ratio of 1:5.3. The results demonstrated that PPYP significantly reduced the triglyceride content in palmitic acid (PA)-induced HepG2 cells and high-sucrose-fed D. melanogaster larvae by regulating the expression of lipid metabolism-related genes, reducing lipogenesis and increasing fatty acid ß-oxidation. To summarize, PPYP can lower lipid levels in HepG2 cells and larval fat body (the functional homolog tissue of the human liver), suggesting that PPYP may be administered as a potential marine lipid-lowering drug.


Assuntos
Hipolipemiantes/isolamento & purificação , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/antagonistas & inibidores , Rodófitas , Alga Marinha/isolamento & purificação , Sefarose/análogos & derivados , Animais , Drosophila melanogaster , Células Hep G2 , Humanos , Hipolipemiantes/farmacologia , Metabolismo dos Lipídeos/fisiologia , Extração Líquido-Líquido/métodos , Sefarose/isolamento & purificação , Sefarose/farmacologia
6.
J Biol Chem ; 296: 100045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33465707

RESUMO

The mammalian apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3 or A3) family of cytidine deaminases restrict viral infections by mutating viral DNA and impeding reverse transcription. To overcome this antiviral activity, most lentiviruses express a viral accessory protein called the virion infectivity factor (Vif), which recruits A3 proteins to cullin-RING E3 ubiquitin ligases such as cullin-5 (Cul5) for ubiquitylation and subsequent proteasomal degradation. Although Vif proteins from primate lentiviruses such as HIV-1 utilize the transcription factor core-binding factor subunit beta as a noncanonical cofactor to stabilize the complex, the maedi-visna virus (MVV) Vif hijacks cyclophilin A (CypA) instead. Because core-binding factor subunit beta and CypA are both highly conserved among mammals, the requirement for two different cellular cofactors suggests that these two A3-targeting Vif proteins have different biochemical and structural properties. To investigate this topic, we used a combination of in vitro biochemical assays and in vivo A3 degradation assays to study motifs required for the MVV Vif to bind zinc ion, Cul5, and the cofactor CypA. Our results demonstrate that although some common motifs between the HIV-1 Vif and MVV Vif are involved in recruiting Cul5, different determinants in the MVV Vif are required for cofactor binding and stabilization of the E3 ligase complex, such as the zinc-binding motif and N- and C-terminal regions of the protein. Results from this study advance our understanding of the mechanism of MVV Vif recruitment of cellular factors and the evolution of lentiviral Vif proteins.


Assuntos
Vírus Visna-Maedi/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Proteínas Culina/metabolismo , Ciclofilina A/metabolismo , Ligação Proteica , Domínios Proteicos , Proteólise , Zinco/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química
7.
FEBS J ; 288(11): 3407-3417, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32893454

RESUMO

APOBEC3 (A3) proteins are a family of host antiviral restriction factors that potently inhibit various retroviral infections, including human immunodeficiency virus (HIV)-1. To overcome this restriction, HIV-1 virion infectivity factor (Vif) recruits the cellular cofactor CBFß to assist in targeting A3 proteins to a host E3 ligase complex for polyubiquitination and subsequent proteasomal degradation. Intervention of the Vif-A3 interactions could be a promising therapeutic strategy to facilitate A3-mediated suppression of HIV-1 in patients. In this structural snapshot, we review the structural features of the recently determined structure of human A3F in complex with HIV-1 Vif and its cofactor CBFß, discuss insights into the molecular principles of Vif-A3 interplay during the arms race between the virus and host, and highlight the therapeutic implications.


Assuntos
Desaminases APOBEC/ultraestrutura , Subunidade beta de Fator de Ligação ao Core/ultraestrutura , Infecções por HIV/genética , Interações Hospedeiro-Patógeno/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/ultraestrutura , Desaminases APOBEC/genética , Subunidade beta de Fator de Ligação ao Core/genética , Infecções por HIV/virologia , HIV-1/genética , HIV-1/patogenicidade , Humanos , Ligação Proteica , Conformação Proteica , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Vírion/genética , Vírion/patogenicidade , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
8.
Nat Struct Mol Biol ; 26(12): 1176-1183, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31792451

RESUMO

HIV-1 virion infectivity factor (Vif) promotes degradation of the antiviral APOBEC3 (A3) proteins through the host ubiquitin-proteasome pathway to enable viral immune evasion. Disrupting Vif-A3 interactions to reinstate the A3-catalyzed suppression of human immunodeficiency virus type 1 (HIV-1) replication is a potential approach for antiviral therapeutics. However, the molecular mechanisms by which Vif recognizes A3 proteins remain elusive. Here we report a cryo-EM structure of the Vif-targeted C-terminal domain of human A3F in complex with HIV-1 Vif and the cellular cofactor core-binding factor beta (CBFß) at 3.9-Å resolution. The structure shows that Vif and CBFß form a platform to recruit A3F, revealing a direct A3F-recruiting role of CBFß beyond Vif stabilization, and captures multiple independent A3F-Vif interfaces. Together with our biochemical and cellular studies, our structural findings establish the molecular determinants that are critical for Vif-mediated neutralization of A3F and provide a comprehensive framework of how HIV-1 Vif hijacks the host protein degradation machinery to counteract viral restriction by A3F.


Assuntos
Citosina Desaminase/química , HIV-1/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Subunidade beta de Fator de Ligação ao Core/química , Microscopia Crioeletrônica , Citosina Desaminase/antagonistas & inibidores , Citosina Desaminase/ultraestrutura , Humanos , Evasão da Resposta Imune , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Proteólise , Relação Estrutura-Atividade , Produtos do Gene vif do Vírus da Imunodeficiência Humana/farmacologia , Produtos do Gene vif do Vírus da Imunodeficiência Humana/ultraestrutura
9.
Biochemistry ; 58(37): 3838-3847, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31448897

RESUMO

The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3 or A3) family of proteins functions in the innate immune system. The A3 proteins are interferon inducible and hypermutate deoxycytidine to deoxyuridine in foreign single-stranded DNA (ssDNA). However, this deaminase activity cannot discriminate between foreign and host ssDNA at the biochemical level, which presents a significant danger when A3 proteins gain access to the nucleus. Interestingly, this A3 capability can be harnessed when coupled with novel CRISPR-Cas9 proteins to create a targeted base editor. Specifically, A3A has been used in vitro to revert mutations associated with disease states. Recent structural studies have shown the importance of loop regions of A3A and A3G in ssDNA recognition and positioning for deamination. In this work, we further examined loop 1 of A3A to determine how it affects substrate selection, as well as the efficiency of deamination, in the hopes of advancing the potential of A3A in base editing technology. We found that mutating residue H29 enhanced deamination activity without changing substrate specificity. Also interestingly, we found that increasing the length of loop 1 decreases substrate specificity. Overall, these results lead to a better understanding of substrate recognition and deamination by A3A and the A3 family of proteins.


Assuntos
Citidina Desaminase/química , Citidina Desaminase/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas/química , Proteínas/metabolismo , Sequência de Aminoácidos , Citidina Desaminase/genética , DNA de Cadeia Simples/genética , Desaminação/fisiologia , Humanos , Mutação/fisiologia , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Proteínas/genética
10.
Insect Biochem Mol Biol ; 108: 44-52, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30905759

RESUMO

Peptidoglycan recognition proteins (PGRPs) recognize bacteria through their unique cell wall constituent, peptidoglycans (PGs). PGRPs are conserved from insects to mammals and all function in antibacterial defense. In the tobacco hornworm Manduca sexta, PGRP1 and microbe binding protein (MBP) interact with PGs and hemolymph protease-14 precursor (proHP14) to yield active HP14. HP14 triggers a serine protease network that produces active phenoloxidase (PO), Spätzle, and other cytokines to stimulate immune responses. PGRP1 binds preferentially to diaminopimelic acid (DAP)-PGs of Gram-negative bacteria and Gram-positive Bacillus and Clostridium species than Lys-PGs of other Gram-positive bacteria. In this study, we synthesized DAP- and Lys-muramyl pentapeptide (MPP) and monitored their associations with M. sexta PGRP1 by surface plasmon resonance. The Kd values (0.57 µM for DAP-MPP and 45.6 µM for Lys-MPP) agree with the differential recognition of DAP- and Lys-PGs. To reveal its structural basis, we produced the PGRP1 in insect cells and determined its structure at a resolution of 2.1 Å. The protein adopts a fold similar to those from other PGRPs with a classical L-shaped PG-binding groove. A unique loop lining the shallow groove suggests a different ligand-binding mechanism. In summary, this study provided new insights into the PG recognition by PGRPs, a critical first step that initiates the serine protease cascade.


Assuntos
Proteínas de Transporte/química , Proteínas de Insetos/química , Manduca/química , Animais , Manduca/imunologia , Simulação de Acoplamento Molecular , Peptidoglicano/química , Estrutura Secundária de Proteína , Receptores de Reconhecimento de Padrão/química , Ressonância de Plasmônio de Superfície
11.
Insect Biochem Mol Biol ; 101: 57-65, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30098411

RESUMO

Melanization is a universal defense mechanism of insects against microbial infection. During this response, phenoloxidase (PO) is activated from its precursor by prophenoloxidase activating protease (PAP), the terminal enzyme of a serine protease (SP) cascade. In the tobacco hornworm Manduca sexta, hemolymph protease-14 (HP14) is autoactivated from proHP14 to initiate the protease cascade after host proteins recognize invading pathogens. HP14, HP21, proHP1*, HP6, HP8, PAP1-3, and non-catalytic serine protease homologs (SPH1 and SPH2) constitute a portion of the extracellular SP-SPH system to mediate melanization and other immune responses. Here we report the expression, purification, and functional characterization of M. sexta HP2. The HP2 precursor is synthesized in hemocytes, fat body, integument, nerve and trachea. Its mRNA level is low in fat body of 5th instar larvae before wandering stage; abundance of the protein in hemolymph displays a similar pattern. HP2 exists as an active enzyme in plasma of the wandering larvae and pupae in the absence of an infection. HP14 cleaves proHP2 to yield active HP2. After incubating active HP2 with larval hemolymph, we detected higher levels of PO activity, i.e. an enhancement of proPO activation. HP2 cleaved proPAP2 (but not proPAP3 or proPAP1) to yield active PAP2, responsible for a major increase in IEARpNA hydrolysis. PAP2 activates proPOs in the presence of a cofactor of SPH1 and SPH2. In summary, we have identified a new member of the proPO activation system and reconstituted a pathway of HP14-HP2-PAP2-PO. Since high levels of HP2 mRNA were present in integument and active HP2 in plasma of wandering larvae, HP2 likely plays a role in cuticle melanization during pupation and protects host from microbial infection in a soil environment.


Assuntos
Endopeptidases/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Manduca/enzimologia , Melaninas/genética , Monofenol Mono-Oxigenase/genética , Serina Endopeptidases/genética , Animais , Endopeptidases/imunologia , Corpo Adiposo/enzimologia , Corpo Adiposo/imunologia , Hemócitos/enzimologia , Hemócitos/imunologia , Hemolinfa/enzimologia , Hemolinfa/imunologia , Proteínas de Insetos/imunologia , Tegumento Comum , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/imunologia , Manduca/genética , Manduca/crescimento & desenvolvimento , Manduca/imunologia , Melaninas/imunologia , Monofenol Mono-Oxigenase/imunologia , Tecido Nervoso/enzimologia , Tecido Nervoso/imunologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Pupa/enzimologia , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/imunologia , Serina Endopeptidases/imunologia , Transdução de Sinais , Traqueia/enzimologia , Traqueia/imunologia
12.
Insect Biochem Mol Biol ; 76: 118-147, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27522922

RESUMO

Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.


Assuntos
Expressão Gênica , Genoma de Inseto , Manduca/genética , Animais , Perfilação da Expressão Gênica , Larva/genética , Larva/crescimento & desenvolvimento , Manduca/crescimento & desenvolvimento , Pupa/genética , Pupa/crescimento & desenvolvimento , Análise de Sequência de DNA , Sintenia
13.
BMC Biol ; 14: 2, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26732497

RESUMO

BACKGROUND: Phenoloxidase (PO)-catalyzed melanization is a universal defense mechanism of insects against pathogenic and parasitic infections. In mosquitos such as Anopheles gambiae, melanotic encapsulation is a resistance mechanism against certain parasites that cause malaria and filariasis. PO is initially synthesized by hemocytes and released into hemolymph as inactive prophenoloxidase (PPO), which is activated by a serine protease cascade upon recognition of foreign invaders. The mechanisms of PPO activation and PO catalysis have been elusive. RESULTS: Herein, we report the crystal structure of PPO8 from A. gambiae at 2.6 Å resolution. PPO8 forms a homodimer with each subunit displaying a classical type III di-copper active center. Our molecular docking and mutagenesis studies revealed a new substrate-binding site with Glu364 as the catalytic residue responsible for the deprotonation of mono- and di-phenolic substrates. Mutation of Glu364 severely impaired both the monophenol hydroxylase and diphenoloxidase activities of AgPPO8. Our data suggested that the newly identified substrate-binding pocket is the actual site for catalysis, and PPO activation could be achieved without withdrawing the conserved phenylalanine residue that was previously deemed as the substrate 'placeholder'. CONCLUSIONS: We present the structural and functional data from a mosquito PPO. Our results revealed a novel substrate-binding site with Glu364 identified as the key catalytic residue for PO enzymatic activities. Our data offered a new model for PPO activation at the molecular level, which differs from the canonical mechanism that demands withdrawing a blocking phenylalanine residue from the previously deemed substrate-binding site. This study provides new insights into the mechanisms of PPO activation and enzymatic catalysis of PO.


Assuntos
Anopheles/enzimologia , Catecol Oxidase/química , Catecol Oxidase/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Animais , Anopheles/química , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Conformação Proteica , Multimerização Proteica
14.
Insect Biochem Mol Biol ; 62: 64-74, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25858029

RESUMO

Signal transduction pathways and their coordination are critically important for proper functioning of animal immune systems. Our knowledge of the constituents of the intracellular signaling network in insects mainly comes from genetic analyses in Drosophila melanogaster. To facilitate future studies of similar systems in the tobacco hornworm and other lepidopteran insects, we have identified and examined the homologous genes in the genome of Manduca sexta. Based on 1:1 orthologous relationships in most cases, we hypothesize that the Toll, Imd, MAPK-JNK-p38 and JAK-STAT pathways are intact and operative in this species, as are most of the regulatory mechanisms. Similarly, cellular processes such as autophagy, apoptosis and RNA interference probably function in similar ways, because their mediators and modulators are mostly conserved in this lepidopteran species. We have annotated a total of 186 genes encoding 199 proteins, studied their domain structures and evolution, and examined their mRNA levels in tissues at different life stages. Such information provides a genomic perspective of the intricate signaling system in a non-drosophiline insect.


Assuntos
Proteínas de Insetos/genética , Manduca/imunologia , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Genoma de Inseto , Imunidade Inata , Proteínas de Insetos/metabolismo , Manduca/genética , Manduca/metabolismo , Anotação de Sequência Molecular , Dados de Sequência Molecular , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
15.
Insect Biochem Mol Biol ; 62: 23-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25662101

RESUMO

Antimicrobial proteins/peptides (AMPs) are effectors of innate immune systems against pathogen infection in multicellular organisms. Over half of the AMPs reported so far come from insects, and these effectors act in concert to suppress or kill bacteria, fungi, viruses, and parasites. In this work, we have identified 86 AMP genes in the Manduca sexta genome, most of which seem likely to be functional. They encode 15 cecropins, 6 moricins, 6 defensins, 3 gallerimycins, 4 X-tox splicing variants, 14 diapausins, 15 whey acidic protein homologs, 11 attacins, 1 gloverin, 4 lebocins, 6 lysozyme-related proteins, and 4 transferrins. Some of these genes (e.g. attacins, cecropins) constitute large clusters, likely arising after rounds of gene duplication. We compared the amino acid sequences of M. sexta AMPs with their homologs in other insects to reveal conserved structural features and phylogenetic relationships. Expression data showed that many of them are synthesized in fat body and midgut during the larval-pupal molt. Certain genes contain one or more predicted κB binding sites and other regulatory elements in their promoter regions, which may account for the dramatic mRNA level increases in fat body and hemocytes after an immune challenge. Consistent with these strong mRNA increases, many AMPs become highly abundant in the larval plasma at 24 h after the challenge, as demonstrated in our previous peptidomic study. Taken together, these data suggest the existence of a large repertoire of AMPs in M. sexta, whose expression is up-regulated via immune signaling pathways to fight off invading pathogens in a coordinated manner.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Genoma de Inseto , Proteínas de Insetos/genética , Manduca/genética , Transcriptoma , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/imunologia , Perfilação da Expressão Gênica , Imunidade Inata/genética , Proteínas de Insetos/química , Proteínas de Insetos/imunologia , Larva/genética , Larva/imunologia , Manduca/imunologia , Manduca/metabolismo , Dados de Sequência Molecular , Filogenia , Conformação Proteica
16.
Insect Biochem Mol Biol ; 62: 75-85, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25554596

RESUMO

C-type lectins (CTLs) are a large family of Ca(2+)-dependent carbohydrate-binding proteins recognizing various glycoconjugates and functioning primarily in immunity and cell adhesion. We have identified 34 CTLDP (for CTL-domain protein) genes in the Manduca sexta genome, which encode proteins with one to three CTL domains. CTL-S1 through S9 (S for simple) have one or three CTL domains; immulectin-1 through 19 have two CTL domains; CTL-X1 through X6 (X for complex) have one or two CTL domains along with other structural modules. Nine simple CTLs and seventeen immulectins have a signal peptide and are likely extracellular. Five complex CTLs have both an N-terminal signal peptide and a C-terminal transmembrane region, indicating that they are membrane anchored. Immulectins exist broadly in Lepidoptera and lineage-specific gene duplications have generated three clusters of fourteen genes in the M. sexta genome, thirteen of which have similar expression patterns. In contrast to the family expansion, CTL-S1∼S6, S8, and X1∼X6 have 1:1 orthologs in at least four lepidopteran/dipteran/coleopteran species, suggestive of conserved functions in a wide range of holometabolous insects. Structural modeling suggests the key residues for Ca(2+)-dependent or independent binding of certain carbohydrates by CTL domains. Promoter analysis identified putative κB motifs in eighteen of the CTL genes, which did not have a strong correlation with immune inducibility in the mRNA or protein levels. Together, the gene identification, sequence comparisons, structure modeling, phylogenetic analysis, and expression profiling establish a solid foundation for future studies of M. sexta CTL-domain proteins.


Assuntos
Proteínas de Insetos/genética , Lectinas Tipo C/genética , Manduca/genética , Animais , Evolução Biológica , Regulação da Expressão Gênica , Genoma de Inseto , Proteínas de Insetos/química , Lectinas Tipo C/química , Filogenia , Estrutura Terciária de Proteína
17.
Insect Biochem Mol Biol ; 62: 51-63, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25530503

RESUMO

Serine protease (SP) and serine protease homolog (SPH) genes in insects encode a large family of proteins involved in digestion, development, immunity, and other processes. While 68 digestive SPs and their close homologs are reported in a companion paper (Kuwar et al., in preparation), we have identified 125 other SPs/SPHs in Manduca sexta and studied their structure, evolution, and expression. Fifty-two of them contain cystine-stabilized structures for molecular recognition, including clip, LDLa, Sushi, Wonton, TSP, CUB, Frizzle, and SR domains. There are nineteen groups of genes evolved from relatively recent gene duplication and sequence divergence. Thirty-five SPs and seven SPHs contain 1, 2 or 5 clip domains. Multiple sequence alignment and molecular modeling of the 54 clip domains have revealed structural diversity of these regulatory modules. Sequence comparison with their homologs in Drosophila melanogaster, Anopheles gambiae and Tribolium castaneum allows us to classify them into five subfamilies: A are SPHs with 1 or 5 group-3 clip domains, B are SPs with 1 or 2 group-2 clip domains, C, D1 and D2 are SPs with a single clip domain in group-1a, 1b and 1c, respectively. We have classified into six categories the 125 expression profiles of SP-related proteins in fat body, brain, midgut, Malpighian tubule, testis, and ovary at different stages, suggesting that they participate in various physiological processes. Through RNA-Seq-based gene annotation and expression profiling, as well as intragenomic sequence comparisons, we have established a framework of information for future biochemical research of nondigestive SPs and SPHs in this model species.


Assuntos
Proteínas de Insetos/química , Manduca/enzimologia , Filogenia , Serina Proteases/química , Transcriptoma , Sequência de Aminoácidos , Animais , Sequência Conservada , Proteínas de Insetos/genética , Manduca/genética , Modelos Moleculares , Conformação Proteica , RNA Mensageiro/genética , Alinhamento de Sequência , Análise de Sequência de RNA , Serina Proteases/genética , Especificidade da Espécie
18.
Biochemistry ; 49(13): 2890-6, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20214399

RESUMO

In archaea and eukaryotes, the nascent polypeptide-associated complex (NAC) is one of the cytosolic chaperones that contact the nascent polypeptide chains as they emerge from the ribosome and assist in post-translational processes. The eukaryotic NAC is a heterodimer, and its two subunits form a stable complex through a dimerizing domain called the NAC domain. In addition to acting as a protein translation chaperone, the NAC subunits also function individually in transcriptional regulation. Here we report the crystal structure of the human NAC domain, which reveals the manner of human NAC dimerization. On the basis of the structure, we identified a region in the NAC domain of the human NAC alpha-subunit as a new nucleic acid-binding region, which is blocked from binding nucleic acids in the heterodimeric complex by a helix region in the beta-subunit.


Assuntos
Chaperonas Moleculares/química , Ácidos Nucleicos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Chaperonas Moleculares/metabolismo , Ligação Proteica , Multimerização Proteica , Subunidades Proteicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA