Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Carcinog ; 63(6): 1038-1050, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38411361

RESUMO

Heat shock protein 90 (Hsp90) is a tumor marker that accelerates cancer growth by disrupting protein homeostasis. However, concerns such as low clinical efficacy and drug resistance continue to be obstacles to the successful marketing of Hsp90 inhibitors. The cytoprotective function of autophagy has been identified as one of the mechanisms by which tumor cells gain resistance to chemotherapy. JD-02 was identified as a new Hsp90 inhibitor that suppressed colorectal cancer (CRC) growth by lowering client protein levels in vivo and in vitro. We found that JD-02 increased cellular autophagy, which inhibited apoptosis. JD-02 enhanced cytoprotective autophagy and regulated apoptotic suppression by increasing intracellular reactive oxygen species and inhibiting SRC protein levels, as demonstrated by quantitative proteomics, bioinformatic analysis, western blotting, and flow cytometry. This effect was reversed by autophagy inhibition. Therefore, due to the synergistic effects of Hsp90 and autophagy inhibitors in efficiently activating apoptotic pathways, they could potentially serve as promising therapeutic options for CRC.


Assuntos
Autofagia , Neoplasias Colorretais , Proteínas de Choque Térmico HSP90 , Espécies Reativas de Oxigênio , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismo , Quinases da Família src/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Chin Med ; 18(1): 21, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855145

RESUMO

BACKGROUND: Artemisia vulgaris L. is often used as a traditional Chinese medicine with the same origin of medicine and food. Its active ingredient in leaves have multiple biological functions such as anti-inflammatory, antibacterial and insecticidal, anti-tumor, antioxidant and immune regulation, etc. It is confirmed that folium Artemisiae argyi has obvious anti-HBV activity, however, its antiviral activity and mechanism against herpesvirus or other viruses are not clear. Hence, we aimed to screen the crude extracts (Fr.8.3) isolated and extracted from folium A. argyi to explore the anti-herpesvirus activity and mechanism. METHODS: The antiherpes virus activity of Fr.8.3 was mainly characterized by cytopathic effects, real-time PCR detection of viral gene replication and expression levels, western blotting, viral titer determination and plaque reduction experiments. The main components of Fr.8.3 were identified by using LC-MS, and selected protein targets of these components were investigated through molecular docking. RESULTS: We collected and isolated a variety of A. vulgaris L. samples from Tangyin County, Henan Province and then screened the A. vulgaris L. leaf extracts for anti-HSV-1 activity. The results of the plaque reduction test showed that the crude extract of A. vulgaris L.-Fr.8.3 had anti-HSV-1 activity, and we further verified the anti-HSV-1 activity of Fr.8.3 at the DNA, RNA and protein levels. Moreover, we found that Fr.8.3 also had a broad spectrum of antiviral activity. Finally, we explored its anti-HSV-1 mechanism, and the results showed that Fr.8.3 exerted an anti-HSV-1 effect by acting directly on the virus itself. Then, the extracts were screened on HSV-1 surface glycoproteins and host cell surface receptors for potential binding ability by molecular docking, which further verified the phenotypic results. LC-MS analysis showed that 1 and 2 were the two main components of the extracts. Docking analysis suggested that compounds from extract 1 might similarly cover the binding domain between the virus and the host cells, thus interfering with virus adhesion to cell receptors, which provides new ideas and insights for clinical drug development for herpes simplex virus type 1. CONCLUSION: We found that Fr.8.3 has anti-herpesvirus and anti-rotavirus effects. The main 12 components in Fr.8.3 were analyzed by LC-MS, and the protein targets were finally predicted through molecular docking, which showed that alkaloids may play a major role in antiviral activity.

3.
Virol J ; 20(1): 8, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647143

RESUMO

Herpes simplex virus type 1 (HSV-1) is a widely disseminated virus that establishes latency in the brain and causes occasional but fatal herpes simplex encephalitis. Currently, acyclovir (ACV) is the main clinical drug used in the treatment of HSV-1 infection, and the failure of therapy in immunocompromised patients caused by ACV-resistant HSV-1 strains necessitates the requirement to develop novel anti-HSV-1 drugs. Artemisia argyi, a Traditional Chinese Medicine, has been historically used to treat inflammation, bacterial infection, and cancer. In this study, we demonstrated the antiviral effect and mechanism of ethanol extract of A. argyi leaves (hereafter referred to as 'AEE'). We showed that AEE at 10 µg/ml exhibits potent antiviral effects on both normal and ACV-resistant HSV-1 strains. AEE also inhibited the infection of HSV-2, rotavirus, and influenza virus. Transmission electron microscopy revealed that AEE destroys the membrane integrity of HSV-1 viral particles, resulting in impaired viral attachment and penetration. Furthermore, mass spectrometry assay identified 12 major components of AEE, among which two new flavones, deoxysappanone B 7,3'-dimethyl ether, and 3,7-dihydroxy-3',4'-dimethoxyflavone, exhibited the highest binding affinity to HSV-1 glycoprotein gB at the surface site critical for gB-gH-gL interaction and gB-mediated membrane fusion, suggesting their involvement in inactivating virions. Therefore, A. argyi is an important source of antiviral drugs, and the AEE may be a potential novel antiviral agent against HSV-1 infection.


Assuntos
Antivirais , Artemisia , Herpesvirus Humano 1 , Extratos Vegetais , Aciclovir/farmacologia , Antivirais/química , Antivirais/farmacologia , Etanol , Herpesvirus Humano 1/efeitos dos fármacos , Envelope Viral , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Artemisia/química , Folhas de Planta/química
4.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555694

RESUMO

Macrophage infiltration is one of the main pathological features of ulcerative colitis (UC) and ferroptosis is a type of nonapoptotic cell death, connecting oxidative stress and inflammation. However, whether ferroptosis occurs in the colon macrophages of UC mice and whether targeting macrophage ferroptosis is an effective approach for UC treatment remain unclear. The present study revealed that macrophage lipid peroxidation was observed in the colon of UC mice. Subsequently, we screened several main components of essential oil from Artemisia argyi and found that ß-caryophyllene (BCP) had a good inhibitory effect on macrophage lipid peroxidation. Additionally, ferroptotic macrophages were found to increase the mRNA expression of tumor necrosis factor alpha (Tnf-α) and prostaglandin-endoperoxide synthase 2 (Ptgs2), while BCP can reverse the effects of inflammation activated by ferroptosis. Further molecular mechanism studies revealed that BCP activated the type 2 cannabinoid receptor (CB2R) to inhibit macrophage ferroptosis and its induced inflammatory response both in vivo and in vitro. Taken together, BCP potentially ameliorated experimental colitis inflammation by inhibiting macrophage ferroptosis. These results revealed that macrophage ferroptosis is a potential therapeutic target for UC and identified a novel mechanism of BCP in ameliorating experimental colitis.


Assuntos
Colite Ulcerativa , Colite , Ferroptose , Camundongos , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Sesquiterpenos Policíclicos/farmacologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Inflamação/tratamento farmacológico , Sulfato de Dextrana
5.
Nano Lett ; 21(1): 60-67, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33331788

RESUMO

The enhancement of terahertz (THz) radiation is of extreme significance for the realization of the THz probe and imaging. However, present THz technologies are far from being enough to realize high-performance and room-temperature THz sources. Fortunately, topological insulators (TIs), with spin-momentum-locked Dirac surface states, are expected to exhibit a high terahertz emission efficiency. In this work, the novel concept of a Rashba-state-enhanced spintronic THz emitter is demonstrated on the basis of ferromagnet/heavy metal/topological insulator (FM/HM/TI) heterostructure. We find that the THz emission intensity changes as a function of HM interlayer thickness, and a 1.98 times higher intensity compared to that of FM/TI can be achieved when a meticulously designed thickness of the HM layer is inserted. The improvement of terahertz radiation is ascribed to the additive effect of Rashba splitting and topological surface states at the HM/TI interface. These results offer new possibilities for realizing spintronic THz emitters in TI-based magnetic heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA