Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 49(8): 2215-2227, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834844

RESUMO

Post-stroke emotional disorders such as post-stroke anxiety and post-stroke depression are typical symptoms in patients with stroke. They are closely associated with poor prognosis and low quality of life. The State Food and Drug Administration of China has approved DL-3-n-butylphthalide (NBP) as a treatment for ischemic stroke (IS). Clinical research has shown that NBP alleviates anxiety and depressive symptoms in patients with IS. Therefore, this study explored the role and molecular mechanisms of NBP in cases of post-stroke emotional disorders using network pharmacology and experimental validation. The results showed that NBP treatment significantly increased the percentage of time spent in the center of the middle cerebral artery occlusion (MCAO) rats in the open field test and the percentage of sucrose consumption in the sucrose preference test. Network pharmacology results suggest that NBP may regulate neuroinflammation and cell death. Further experiments revealed that NBP inhibited the toll-like receptor 4/nuclear factor kappa B signaling pathway, decreased the level of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1ß, and interleukin-6, and M1-type microglia markers (CD68, inducible nitric oxide synthase), and reduced the expression of PANoptosis-related molecules including caspase-1, caspase-3, caspase-8, gasdermin D, and mixed lineage kinase domain-like protein in the hippocampus of the MACO rats. These findings demonstrate that the mechanisms through which NBP ameliorates post-stroke emotional disorders in rats are associated with inhibiting neuroinflammation and PANoptosis, providing a new strategy and experimental basis for treating post-stroke emotional disorders.


Assuntos
Benzofuranos , Infarto da Artéria Cerebral Média , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Animais , Benzofuranos/uso terapêutico , Benzofuranos/farmacologia , Masculino , Doenças Neuroinflamatórias/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Ratos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Farmacologia em Rede , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Citocinas/metabolismo , NF-kappa B/metabolismo
2.
Eur J Med Res ; 29(1): 271, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711117

RESUMO

Dexmedetomidine (Dex) has been used in surgery to improve patients' postoperative cognitive function. However, the role of Dex in stress-induced anxiety-like behaviors and cognitive impairment is still unclear. In this study, we tested the role of Dex in anxiety-like behavior and cognitive impairment induced by acute restrictive stress and analyzed the alterations of the intestinal flora to explore the possible mechanism. Behavioral and cognitive tests, including open field test, elevated plus-maze test, novel object recognition test, and Barnes maze test, were performed. Intestinal gut Microbe 16S rRNA sequencing was analyzed. We found that intraperitoneal injection of Dex significantly improved acute restrictive stress-induced anxiety-like behavior, recognition, and memory impairment. After habituation in the environment, mice (male, 8 weeks, 18-23 g) were randomly divided into a control group (control, N = 10), dexmedetomidine group (Dex, N = 10), AS with normal saline group (AS + NS, N = 10) and AS with dexmedetomidine group (AS + Dex, N = 10). By the analysis of intestinal flora, we found that acute stress caused intestinal flora disorder in mice. Dex intervention changed the composition of the intestinal flora of acute stress mice, stabilized the ecology of the intestinal flora, and significantly increased the levels of Blautia (A genus of anaerobic bacteria) and Coprobacillus. These findings suggest that Dex attenuates acute stress-impaired learning and memory in mice by maintaining the homeostasis of intestinal flora.


Assuntos
Dexmedetomidina , Microbioma Gastrointestinal , Homeostase , Estresse Psicológico , Animais , Dexmedetomidina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Homeostase/efeitos dos fármacos , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Memória/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Aprendizagem em Labirinto/efeitos dos fármacos , Ansiedade/tratamento farmacológico
3.
Front Oncol ; 13: 1140813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37182123

RESUMO

MicroRNAs (miRNAs) play vital roles in the post-transcriptional regulation of gene expression. Previous studies have shown that miR-150 is a crucial regulator of B cell proliferation, differentiation, metabolism, and apoptosis. miR-150 regulates the immune homeostasis during the development of obesity and is aberrantly expressed in multiple B-cell-related malignant tumors. Additionally, the altered expression of MIR-150 is a diagnostic biomarker of various autoimmune diseases. Furthermore, exosome-derived miR-150 is considered as prognostic tool in B cell lymphoma, autoimmune diseases and immune-mediated disorders, suggesting miR-150 plays a vital role in disease onset and progression. In this review, we summarized the miR-150-dependent regulation of B cell function in B cell-related immune diseases.

4.
J Am Heart Assoc ; 12(6): e028198, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36752235

RESUMO

Background The imbalance of monocyte/macrophage polarization toward the preferential proinflammatory phenotype and a lack of normal inflammation resolution are present in acute myocardial infarction (AMI). Our previous study showed that upregulation of brain-derived neurotrophic factor precursor (proBDNF) in M2-like monocytes may contribute to the proinflammatory response in the Stanford type-A acute aortic dissection. The present study aimed to investigate the role of proBDNF signaling in monocytes/macrophages in the progress of AMI. Methods and Results We observed the upregulation of proBDNF in the proinflammatory monocytes of patients with AMI. The upregulation of proBDNF was also observed in the circulating proinflammatory Ly6Chigh monocytes and cardiac F4/80+CD86+ macrophages 3 days after AMI in a mice model. To neutralize proBDNF, the mice subjected to AMI were injected intraperitoneally with a monoclonal anti-proBDNF antibody. Echocardiography, 2,3,5-triphenyltetrazolium chloride staining, and positron emission tomography/computed tomography results demonstrate that monoclonal anti-proBDNF antibody treatment further impaired cardiac functions, increased infarct size, and exacerbated the proinflammatory state. Moreover, the level of proinflammatory Ly6Chigh in the blood and F4/80+CD86+ in the heart was further increased in monoclonal anti-proBDNF antibody mice. RNA sequencing revealed that matrix metalloprotease-9 protein level was dramatically increased, along with the activated proinflammatory-related cytokines. Matrix metalloprotease-9 inhibitor treatment attenuated the deteriorated effect of monoclonal anti-proBDNF antibody on cardiac function and infarct areas. Conclusions Our study shows that endogenous proBDNF in monocytes/macrophages may exert protective roles in cardiac remodeling after AMI by regulating matrix metalloprotease-9 activity.


Assuntos
Monócitos , Infarto do Miocárdio , Camundongos , Animais , Monócitos/metabolismo , Infarto do Miocárdio/terapia , Macrófagos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Metaloproteases/metabolismo , Metaloproteases/farmacologia , Camundongos Endogâmicos C57BL
5.
Clin Exp Immunol ; 211(3): 208-223, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36420636

RESUMO

Mitochondria are the controllers of cell metabolism and are recognized as decision makers in cell death pathways, organizers of cytoplasmic signaling networks, managers of cellular stress responses, and regulators of nuclear gene expression. Cells of the immune system are particularly dependent on mitochondrial resources, as they must swiftly respond to danger signals with activation, trafficking, migration, and generation of daughter cells. Analogously, faulty immune responses that lead to autoimmunity and tissue inflammation rely on mitochondria to supply energy, cell building blocks and metabolic intermediates. Emerging data endorse the concept that mitochondrial fitness, and the lack of it, is of particular relevance in the autoimmune disease rheumatoid arthritis (RA) where deviations of bioenergetic and biosynthetic flux affect T cells during early and late stages of disease. During early stages of RA, mitochondrial deficiency allows naïve RA T cells to lose self-tolerance, biasing fundamental choices of the immune system toward immune-mediated tissue damage and away from host protection. During late stages of RA, mitochondrial abnormalities shape the response patterns of RA effector T cells engaged in the inflammatory lesions, enabling chronicity of tissue damage and tissue remodeling. In the inflamed joint, autoreactive T cells partner with metabolically reprogrammed tissue macrophages that specialize in antigen-presentation and survive by adapting to the glucose-deplete tissue microenvironment. Here, we summarize recent data on dysfunctional mitochondria and mitochondria-derived signals relevant in the RA disease process that offer novel opportunities to deter autoimmune tissue inflammation by metabolic interference.


Assuntos
Artrite Reumatoide , Humanos , Linfócitos T , Inflamação/metabolismo , Autoimunidade , Mitocôndrias
6.
Nat Metab ; 4(6): 759-774, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35739396

RESUMO

Tissue macrophages (Mϕ) are essential effector cells in rheumatoid arthritis (RA), contributing to autoimmune tissue inflammation through diverse effector functions. Their arthritogenic potential depends on their proficiency to survive in the glucose-depleted environment of the inflamed joint. Here, we identify a mechanism that links metabolic adaptation to nutrient stress with the efficacy of tissue Mϕ to activate adaptive immunity by presenting antigen to tissue-invading T cells. Specifically, Mϕ populating the rheumatoid joint produce and respond to the small cytokine CCL18, which protects against cell death induced by glucose withdrawal. Mechanistically, CCL18 induces the transcription factor RFX5 that selectively upregulates glutamate dehydrogenase 1 (GLUD1), thus enabling glutamate utilization to support energy production. In parallel, RFX5 enhances surface expression of HLA-DR molecules, promoting Mϕ-dependent expansion of antigen-specific T cells. These data place CCL18 at the top of a RFX5-GLUD1 survival pathway and couple adaptability to nutrient conditions in the tissue environment to antigen-presenting function in autoimmune tissue inflammation.


Assuntos
Macrófagos , Fatores de Transcrição , Glucose , Humanos , Inflamação , Nutrientes , Fatores de Transcrição de Fator Regulador X
7.
Front Immunol ; 13: 859730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669771

RESUMO

The incidence of testicular germ cell tumor (TGCT) is currently on the rise worldwide, of which 15%-30% of patients have occur recurrence and metastasis. However, clinical methods for diagnosing TGCT and judging its prognosis remained inadequate. In this study, we aimed to explore the possibility of testis-specific long-chain non-coding RNA (lncRNA) Ret finger protein-like 3S (RFPL3S) as a biomarker for TGCT diagnosis, prognosis, and treatment response by reviewing the TGCT gene expression data in Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The cohort data and DNA methylation data of TGCT in TCGA were downloaded from TGCA, UCSC XENA, and GEO. The bioinformatic tools were used, including GEPIA2, Kaplan-Meier Plotter, LinkedOmics, UCSC XENA, Sangerbox Tools, GSCA, and Tumor Immune Dysfunction and Exclusion. Compared with normal testicular tissues, the RFPL3S expression was significantly reduced in TGCT, and was significantly negatively correlated with the patient's Tumor, Node, Metastasis stage. Hypermethylation and low copy number of RFPL3S were present in TGCT, and low RFPL3S was associated with short disease-free and progression-free intervals. Silencing RFPL3S significantly enhanced the invasion ability and proliferation ability of TGCT cells as evaluated by Transwell and CCK-8 experiments. Additionally, RFPL3S expression was positively correlated with the infiltration of immune-activating cells such as B cells, CD8+ T cells, cytotoxic T cells, and natural killer cells, and negatively correlated with the infiltration of immunosuppressive cells such as Th17 and Th2. Higher RFPL3S expression was present in patients with immunotherapy benefits. In conclusion, we determined that the testis-specific lncRNA RFPL3S functioned as a tumor suppressor in TGCT and could be used as a prognostic predictor of TGCT, as well as a marker to predict the effect of TGCT immunotherapy.


Assuntos
RNA Longo não Codificante , Neoplasias Testiculares , Biomarcadores , Proteínas de Transporte , Humanos , Imunoterapia , Masculino , Neoplasias Embrionárias de Células Germinativas , Prognóstico , RNA Longo não Codificante/genética , Neoplasias Testiculares/diagnóstico , Neoplasias Testiculares/genética , Neoplasias Testiculares/terapia
8.
Nat Immunol ; 22(12): 1551-1562, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811544

RESUMO

Misdirected immunity gives rise to the autoimmune tissue inflammation of rheumatoid arthritis, in which excess production of the cytokine tumor necrosis factor (TNF) is a central pathogenic event. Mechanisms underlying the breakdown of self-tolerance are unclear, but T cells in the arthritic joint have a distinctive metabolic signature of ATPlo acetyl-CoAhi proinflammatory effector cells. Here we show that a deficiency in the production of mitochondrial aspartate is an important abnormality in these autoimmune T cells. Shortage of mitochondrial aspartate disrupted the regeneration of the metabolic cofactor nicotinamide adenine dinucleotide, causing ADP deribosylation of the endoplasmic reticulum (ER) sensor GRP78/BiP. As a result, ribosome-rich ER membranes expanded, promoting co-translational translocation and enhanced biogenesis of transmembrane TNF. ERrich T cells were the predominant TNF producers in the arthritic joint. Transfer of intact mitochondria into T cells, as well as supplementation of exogenous aspartate, rescued the mitochondria-instructed expansion of ER membranes and suppressed TNF release and rheumatoid tissue inflammation.


Assuntos
Artrite Reumatoide/metabolismo , Ácido Aspártico/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Mitocôndrias/metabolismo , Membrana Sinovial/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , ADP-Ribosilação , Transferência Adotiva , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD4-Positivos/ultraestrutura , Estudos de Casos e Controles , Células Cultivadas , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Chaperona BiP do Retículo Endoplasmático/metabolismo , Feminino , Humanos , Masculino , Camundongos , Mitocôndrias/imunologia , Mitocôndrias/transplante , Mitocôndrias/ultraestrutura , Membrana Sinovial/imunologia , Membrana Sinovial/ultraestrutura , Fator de Necrose Tumoral alfa/genética
9.
Dis Markers ; 2021: 8867368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628340

RESUMO

The present study is aimed at examining the serum levels of brain-derived neurotrophic factor (BDNF) and investigating its role in differential diagnosis of colorectal cancer (CRC). Materials and Methods. In a Chinese population, we conducted a case-control study to compare the diagnostic performance of serum levels of BDNF and carcinoembryonic antigen (CEA) for CRC. We enrolled 61 healthy controls, 31 patients with adenomas, and 81 patients with CRC. We explored the correlation between serum levels of BDNF and several pathological features, such as tumor differentiation and TNM staging. Results. The serum levels of BDNF were significantly (p < 0.0001) higher in patients with CRC (10.64 ± 3.84, n = 81) than in the healthy controls (4.69 ± 1.69 ng/mL, n = 61). Serum BDNF also correlated with tumor size, tumor differentiation, and TNM staging (p < 0.05). For early diagnosis, the combination of BDNF (AUC 0.719; 95% CI, 0.621-0.816) and CEA (AUC 0.733; 95% CI, 0.632-0.909) slightly improved the diagnostic performance for CRC (AUC 0.823; 95% CI, 0.737-0.909). Conclusions. Combined detection of serum BDNF and CEA may thus have the potential to become a new laboratory method for the early clinical diagnosis of CRC.


Assuntos
Adenoma/diagnóstico , Biomarcadores Tumorais/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Antígeno Carcinoembrionário/genética , Neoplasias Colorretais/diagnóstico , Adenoma/sangue , Adenoma/genética , Adenoma/patologia , Idoso , Área Sob a Curva , Biomarcadores Tumorais/sangue , Fator Neurotrófico Derivado do Encéfalo/sangue , Antígeno Carcinoembrionário/sangue , Estudos de Casos e Controles , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Carga Tumoral
10.
Neuropharmacology ; 184: 108410, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33242526

RESUMO

Substantial evidence has revealed that abnormalities in synaptic plasticity play important roles during the process of depression. LASP1 (LIM and SH3 domain protein 1), a member of actin-binding proteins, has been shown to be associated with the regulation of synaptic plasticity. However, the role of LASP1 in the regulation of mood is still unclear. Here, using an unpredictable chronic mild stress (UCMS) paradigm, we found that the mRNA and protein levels of LASP1 were decreased in the hippocampus of stressed mice and that UCMS-induced down-regulation of LASP1 was abolished by chronic administration of fluoxetine. Adenosine-associated virus-mediated hippocampal LASP1 overexpression alleviated the UCMS-induced behavioral results of forced swimming test and sucrose preference test in stressed mice. It also restored the dendritic spine density, elevated the levels of AKT (a serine/threonine protein kinase), phosphorylated-AKT, insulin-like growth factor 2, and postsynaptic density protein 95. These findings suggest that LASP1 alleviates UCMS-provoked behavioral defects, which may be mediated by an enhanced dendritic spine density and more activated AKT-dependent LASP1 signaling, pointing to the antidepressant role of LASP1.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas com Domínio LIM/metabolismo , Estresse Psicológico/metabolismo , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Doença Crônica , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/patologia
11.
Neurotox Res ; 38(4): 887-899, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32588356

RESUMO

Major depressive disorders (MDD) are often comorbid with the gastrointestinal (GI) disorders. Brain-derived neurotrophic factor precursor (proBDNF) has been reported to contribute to the development of depression in mouse models. However, the role of proBDNF in depression-associated GI disorders is still unrevealed. Mice experienced unpredictable chronic mild stress (UCMS) procedure and were then intraperitoneally injected with fluoxetine (20 mg/kg). Open field test (OFT), forced swimming test (FST), and sucrose preference test (SPT) were performed to evaluate the severity of depression. Oral administration of food dye gel and histological staining were performed to assess GI transit and morphological alterations. QPCR was performed to assess the mRNA levels of inflammatory cytokines. Additionally, flow cytometry, immunohistochemistry, and immunofluorescence were performed to examine the expression and cellular localization of proBDNF. It was found that (a) in the peripheral blood, the expression of proBDNF and its receptor pan neurotrophin receptor 75 (p75NTR) in CD11b+ cells in depressive mice was higher than in controls; (b) the GI motility was decreased after the UCMS procedure and partly reversed by fluoxetine treatment; (c) proBDNF/p75NTR was highly expressed in macrophages in the intestinal lamina propria; (d) the upregulated proBDNF/p75NTR and the activated cytokines, including IL (interleukin)-1ß, IL-6, IL-10, and IFN (interferon)-γ, were positively correlated with the depression and GI disorders, and were inhibited by fluoxetine treatment. UCMS procedure upregulated the expression of proBDNF and p75NTR in monocytes/macrophages of peripheral blood and intestinal lamina propria, which may be involved in the pathogenesis of depression-associated GI disorders. Fluoxetine reversed the GI dysfunction, infiltration of macrophages, and upregulation of proBDNF signaling in the depressive mice.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Transtorno Depressivo Maior/metabolismo , Gastroenteropatias/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Precursores de Proteínas/biossíntese , Animais , Antidepressivos de Segunda Geração/farmacologia , Antidepressivos de Segunda Geração/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/psicologia , Modelos Animais de Doenças , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/psicologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia
12.
FASEB J ; 34(2): 2541-2553, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908023

RESUMO

Brain-derived neurotrophic factor precursor (proBDNF) has been reported to strengthen the dysfunction of monocytes/macrophages in animal studies. However, it is still unknown the roles of proBDNF in the dysfunction of monocytes in the inflammatory diseases in humans. In the present study, we showed that proBDNF and pan neurotrophic receptor p75 were significantly upregulated in monocytes from healthy donors (HD) after lipopolysaccharide treatment. Exogenous proBDNF treatment upregulated CD40 and proinflammatory cytokines expression in monocytes including interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. In Stanford type-A acute aortic dissection (AAD) patients, proBDNF was upregulated in CD14+ CD163+ CX3CR1+ M2- but not CD14+ CD68+ CCR2+ M1-like monocytes. In addition, sera from AAD patients activated gene expression of proinflammatory cytokines in cultured PBMCs from HD, which was attenuated by proBDNF monoclonal antibody (Ab-proB) treatment. These findings suggested that upregulation of proBDNF in M2-like monocytes may contribute to the proinflammatory response in the AAD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Precursores de Proteínas/metabolismo , Adulto , Dissecção Aórtica/metabolismo , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
13.
Neurotox Res ; 31(4): 505-520, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28092020

RESUMO

Early-life stress is a potent risk factor for development of psychiatric conditions such as depression. The underlying mechanisms remain poorly understood. Here, we used the early-life social isolation (ESI) model of early-life stress in rats to characterize development of depressive-like behavior, the role of microglia, levels of histone methylation, as well as expression of glutamate receptor subunits in the hippocampus. We found that depressive-like behavior was induced after ESI as determined by sucrose preference and forced swimming tests. Increased expression of microglial activation marker, Iba1, was observed in the hippocampus of the ESI group, while expression of the microglial CD200 receptor, which promotes microglial quiescence, significantly decreased. In addition, increased levels of proinflammatory cytokines, interleukin 1ß (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were observed in the hippocampus of the ESI group. Moreover, ESI increased levels of neuronal H3K9me2 (a repressive marker of transcription) and its associated "writer" enzymes, G9a and G9a-like protein, in the hippocampus. ESI also decreased expression of hippocampal NMDA receptor subunits, NR1, and AMPA receptor subunits, GluR1 and GluR2, which are involved in synaptic plasticity, but it did not affect expression of PSD95 and NR2B. Interestingly, treatment with minocycline to block microglial activation induced by ESI inhibited increases in hippocampal microglia and prevented ESI-induced depressive-like behavior as well as increases in IL-1ß, IL-6, and TNF-α. Notably, minocycline also triggered downregulation of H3K9me2 expression and restored expression of NR1, GluR1, and GluR2. These results suggest that ESI induces depressive-like behavior, which may be mediated by microglial signaling.


Assuntos
Depressão/metabolismo , Histonas/metabolismo , Microglia/metabolismo , Minociclina/farmacologia , Isolamento Social/psicologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Preferências Alimentares/efeitos dos fármacos , Hipocampo/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Resposta de Imobilidade Tônica/efeitos dos fármacos , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Metilação/efeitos dos fármacos , Proteínas dos Microfilamentos/metabolismo , Ratos , Receptores de AMPA/metabolismo , Receptores Imunológicos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Onco Targets Ther ; 9: 6999-7009, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27895492

RESUMO

MicroRNA (miR)-29a has been implicated in non-small cell lung cancer (NSCLC), but the mechanism remains largely unclear. LASP1, a cAMP- and cGMP-dependent signaling protein, was recently found to promote proliferation and aggressiveness in NSCLC. However, the regulatory mechanism of LASP1 expression in NSCLC, as well as the relationship between LASP1 and miR-29a, has never been previously studied. In this study, we found that miR-29a was remarkably downregulated and low expression of miR-29a was associated with the malignant progression of NSCLC. Moreover, the expression of LASP1 was markedly increased in NSCLC tissues and cell lines. Bioinformatics analysis and luciferase reporter assay data further identified LASP1 as a target gene of miR-29a, and the expression of LASP1 was negatively mediated by miR-29a at the post-transcriptional level in NSCLC cells. Overexpression of miR-29a reduced the proliferation, migration, and invasion of NSCLC cells, just as the effects of LASP1 knockdown. Moreover, overexpression of LASP1 attenuated the suppressive effect of miR-29a on the malignant phenotypes of NSCLC cells. In addition, upregulation of miR-29a decreased the growth of A549 cells in nude mice and protected the animals from tumor-induced death. Therefore, we demonstrate that miR-29a plays a suppressive role in NSCLC via targeting LASP1, suggesting that the miR-29a/LASP1 axis may become a promising therapeutic target for NSCLC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA