Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(7)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39062456

RESUMO

As a kind of proteolytic enzyme extracted from earthworms, lumbrokinase has been used as an antithrombotic drug clinically. Nevertheless, its potential in anti-cancer, especially in anti-non-small cell lung cancer (NSCLC), as a single form of treatment or in combination with other therapies, is still poorly understood. In this study, we explored the anti-tumor role and the responsive molecular mechanisms of lumbrokinase in suppressing tumor angiogenesis and chemoresistance development in NSCLC and its clinical potential in combination with bevacizumab and chemotherapeutics. Lumbrokinase was found to inhibit cell proliferation in a concentration-dependent manner and caused metastasis suppression and apoptosis induction to varying degrees in NSCLC cells. Lumbrokinase enhanced the anti-angiogenesis efficiency of bevacizumab by down-regulating BPTF expression, decreasing its anchoring at the VEGF promoter region and subsequent VEGF expression and secretion. Furthermore, lumbrokinase treatment reduced IC50 values of chemotherapeutics and improved their cytotoxicity in parental and chemo-resistant NSCLC cells via inactivating the NF-κB pathway, inhibiting the expression of COX-2 and subsequent secretion of PGE2. LPS-induced NF-κB activation reversed its inhibition on NSCLC cell proliferation and its synergy with chemotherapeutic cytotoxicity, while COX-2 inhibitor celecoxib treatment boosted such effects. Lumbrokinase combined with bevacizumab, paclitaxel, or vincristine inhibited the xenograft growth of NSCLC cells in mice more significantly than a single treatment. In conclusion, lumbrokinase inhibited NSCLC survival and sensitized NSCLC cells to bevacizumab or chemotherapeutics treatment by targeted down-regulation of BPTF/VEGF signaling and inactivation of NF-κB/COX-2 signaling, respectively. The combinational applications of lumbrokinase with bevacizumab or chemotherapeutics are expected to be developed as promising candidate therapeutic strategies to improve the efficacy of the original monotherapy in anti-NSCLC.


Assuntos
Bevacizumab , Carcinoma Pulmonar de Células não Pequenas , Ciclo-Oxigenase 2 , Sinergismo Farmacológico , Neoplasias Pulmonares , NF-kappa B , Oligoquetos , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , NF-kappa B/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Endopeptidases
2.
PLoS Biol ; 21(9): e3002256, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37708089

RESUMO

The eradication of cancer stem cells (CSCs) with drug resistance confers the probability of local tumor control after chemotherapy or targeted therapy. As the main drug resistance marker, ABCG2 is also critical for colorectal cancer (CRC) evolution, in particular cancer stem-like traits expansion. Hitherto, the knowledge about the expression regulation of ABCG2, in particular its upstream transcriptional regulatory mechanisms, remains limited in cancer, including CRC. Here, ABCG2 was found to be markedly up-regulated in CRC CSCs (cCSCs) expansion and chemo-resistant CRC tissues and closely associated with CRC recurrence. Mechanistically, TOX3 was identified as a specific transcriptional factor to drive ABCG2 expression and subsequent cCSCs expansion and chemoresistance by binding to -261 to -141 segments of the ABCG2 promoter region. Moreover, we found that TOX3 recruited WDR5 to promote tri-methylation of H3K4 at the ABCG2 promoter in cCSCs, which further confers stem-like traits and chemoresistance to CRC by co-regulating the transcription of ABCG2. In line with this observation, TOX3, WDR5, and ABCG2 showed abnormal activation in chemo-resistant tumor tissues of in situ CRC mouse model and clinical investigation further demonstrated the comprehensive assessment of TOX3, WDR5, and ABCG2 could be a more efficient strategy for survival prediction of CRC patients with recurrence or metastasis. Thus, our study found that TOX3-WDR5/ABCG2 signaling axis plays a critical role in regulating CRC stem-like traits and chemoresistance, and a combination of chemotherapy with WDR5 inhibitors may induce synthetic lethality in ABCG2-deregulated tumors.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Animais , Camundongos , Resistencia a Medicamentos Antineoplásicos/genética , Modelos Animais de Doenças , Conhecimento , Células-Tronco Neoplásicas , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
3.
Cancer Sci ; 114(6): 2277-2292, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36786527

RESUMO

The mediator complex usually cooperates with transcription factors to be involved in RNA polymerase II-mediated gene transcription. As one component of this complex, MED27 has been reported in our previous studies to promote thyroid cancer and melanoma progression. However, the precise function of MED27 in breast cancer development remains poorly understood. Here, we found that MED27 was more highly expressed in breast cancer samples than in normal tissues, especially in triple-negative breast cancer, and its expression level was elevated with the increase in pathological stage. MED27 knockdown in triple-negative breast cancer cells inhibited cancer cell metastasis and stemness maintenance, which was accompanied by downregulation of the expression of EMT- and stem traits-associated proteins, and vice versa in non-triple-negative breast cancer. Furthermore, MED27 knockdown sensitized breast cancer cells to epirubicin treatment by inducing cellular apoptosis and reducing tumorsphere-forming ability. Based on RNA-seq, we identified KLF4 as the possible downstream target of MED27. KLF4 overexpression reversed the MED27 silencing-mediated arrest of cellular metastasis and stemness maintenance capacity in breast cancer in vitro and in vivo. Mechanistically, MED27 transcriptionally regulated KLF4 by binding to its promoter region at positions -156 to +177. Collectively, our study not only demonstrated the tumor-promoting role of MED27 in breast cancer progression by transcriptionally targeting KLF4, but also suggested the possibility of developing the MED27/KLF4 signaling axis as a potential therapeutic target in breast cancer.


Assuntos
Neoplasias Mamárias Animais , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Mamárias Animais/genética , Complexo Mediador/genética , Complexo Mediador/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética
4.
Eur J Med Res ; 27(1): 299, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36529788

RESUMO

PURPOSE: VEGF facilitates tumor angiogenesis, and bevacizumab targeting VEGF is used in anti-tumor therapy. It is meaningful to clarify the upstream regulatory mechanism of VEGF. BPTF is important in chromosomal remodeling, and promotes the progression of tumors. However, its role in promoting tumor angiogenesis by targeting VEGF has not been fully reported. This study aims to elucidate the expression regulation of VEGF by BPTF and its clinical significance in NSCLC. METHODS: 1. BPTF siRNA and shRNA plasmids were used to reduce the expression of BPTF by transfection in vivo and in vitro. BPTF, VEGF and CD144 expressions were examined by immunofluorescence and Western Blot. 2. The expressions of BPTF, VEGF, CD144 and CD31 were detected in lung adenocarcinoma samples by immunofluorescence, Western blot and immunohistochemical staining. 3. 26 lung adenocarcinoma patients treated by bevacizumab were divided into 2 groups according to the treatment efficacy. BPTF and VEGF expressions were analyzed. RESULTS: 1. BPTF knockdown inhibited the expression of VEGF and CD144 in vivo and in vitro. 2. Compared with para-cancer tissues, BPTF, VEGF, CD144 and CD31 were highly expressed in lung adenocarcinoma. 3. In 75 lung adenocarcinoma specimens, BPTF and VEGF overexpression was correlated with lymph node metastasis and clinical stage. The 5-year survival rate of patients with BPTF and VEGF low expression was higher, and BPTF expression was positively correlated with VEGF expression. 4. Among 26 patients treated with bevacizumab, the patients with BPTF overexpression are more sensitive to the treatment. CONCLUSIONS: BPTF positively regulates VEGF expression and its high expression predicts a better efficacy of bevacizumab treatment in NSCLC.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Bevacizumab/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Relevância Clínica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas do Tecido Nervoso , RNA Interferente Pequeno , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Redox Biol ; 55: 102418, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35932692

RESUMO

As the largest subunit of the nuclear remodeling factor complex, Bromodomain PHD Finger Transcription Factor (BPTF) has been reported to be involved in tumorigenesis and development in several cancers. However, to date, its functions and related molecular mechanisms in colorectal cancer (CRC) are still poorly defined and deserve to be revealed. In this study, we uncovered that, under the expression regulation of c-Myc, BPTF promoted CRC progression by targeting Cdc25A. BPTF was found to be highly expressed in CRC and promoted the proliferation and metastasis of CRC cells through BPTF specific siRNAs, shRNAs or inhibitors. Based on RNA-seq, combined with DNA-pulldown, ChIP and luciferase reporter assay, we proved that, by binding to -178/+107 region within Cdc25A promoter, BPTF transcriptionally activated Cdc25A, thus accelerating the cell cycle process of CRC cells. Meanwhile, BPTF itself was found to be transcriptionally regulated by c-Myc. Moreover, BPTF knockdown or inactivation was verified to sensitize CRC cells to chemotherapeutics, 5-Fluorouracil (5FU) and Oxaliplatin (Oxa), c-Myc inhibitor and cell cycle inhibitor not just at the cellular level in vitro, but in subcutaneous xenografts or AOM/DSS-induced in situ models of CRC in mice, while Cdc25A overexpression partially reversed BPTF silencing-caused tumor growth inhibition. Clinically, BPTF, c-Myc and Cdc25A were highly expressed in CRC tissues simultaneously, the expression of any two of the three was positively correlated, and their expressions were highly relevant to tumor differentiation, TNM staging and poor prognosis of CRC patients. Thus, our study indicated that the targeted inhibition of BPTF alone, or together with chemotherapy and/or cell cycle-targeted therapy, might act as a promising new strategy for CRC treatment, while c-Myc/BPTF/Cdc25A signaling axis is expected to be developed as an associated set of candidate biomarkers for CRC diagnosis and prognosis prediction.

6.
Free Radic Biol Med ; 177: 31-47, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34648907

RESUMO

In spite of significant advances in the understanding of glioma biology and pathology, survival remains poor. Therefore, it is still of great significance to further explore the key factors involved in tumorigenesis and development in glioma and find potential new therapeutic targets. Here, we show that thyroid hormone receptor interactor 4 (TRIP4) is highly expressed in glioma cells and tissues. Patients of glioma with high expression of TRIP4 possess poor overall survival. Knockdown of TRIP4 inhibited tumor cell proliferation, metastasis, and apoptosis suppression, whereas overexpression of TRIP4 displays the opposite effects. Further research showed that TRIP4 promoted glioma progression through regulating DDIT4 expression and subsequent activation of mTOR signaling. DDIT4 overexpression restored the inhibition of tumor growth by TRIP4 knockdown in vitro and in vivo. Consistently, mTOR activity inhibition reversed TRIP4 overexpression-mediated tumor promotion in vitro and in vivo. Moreover, molecular mechanism exploration demonstrates that TRIP4 functions as a specific transcriptional activator to anchor at the promoter region of DDIT4 gene (-196 to -11) to regulate its transcription and such regulation was affected by HIF1α. Clinically, TRIP4 expression is positively correlated with DDIT4 expression in glioma samples based on tissue microarray analysis and both of their high expression predicts the malignancy of the disease. Altogether, our findings identify TRIP4 as a critical promoter of glioma progression by targeting DDIT4 and mTOR signaling successively and suggest that TRIP4-DDIT4 axis has potential to be a novel therapeutic target in glioma treatment.


Assuntos
Glioma , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição
7.
Mol Oncol ; 15(4): 1180-1202, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33305480

RESUMO

Human telomerase reverse transcriptase (hTERT) plays an extremely important role in cancer initiation and development, including colorectal cancer (CRC). However, the precise upstream regulatory mechanisms of hTERT in different cancer types remain poorly understood. Here, we uncovered the candidate transcriptional factor of hTERT in CRC and explored its role and the corresponding molecular mechanisms in regulating hTERT expression and CRC survival with an aim of developing mechanism-based combinational targeting therapy. The possible binding proteins at the hTERT promoter were uncovered using pull-down/mass spectrometry analysis. The regulation of SPT6 on hTERT expression and CRC survival was evaluated in human CRC cell lines and mouse models. Mechanistic studies focusing on the synergy between SPT6 and staphylococcal nuclease and Tudor domain containing 1 (SND1) in controlling hTERT expression and CRC progression were conducted also in the above two levels. The expression correlation and clinical significance of SPT6, SND1, and hTERT were investigated in tumor tissues from murine models and patients with CRC in situ. SPT6 was identified as a possible transcriptional factor to bind to the hTERT promoter. SPT6 knockdown decreased the activity of hTERT promoter, downregulated the protein expression level of hTERT, suppressed proliferation, invasion, and stem-like properties, promoted apoptosis induction, and enhanced chemotherapeutic drug sensitivity in vitro. SPT6 silencing also led to the delay of tumor growth and metastasis in mice carrying xenografts of human-derived colon cancer cells. Mechanistically, SND1 interacted with SPT6 to co-control hTERT expression and CRC cell proliferation, stemness, and growth in vitro and in vivo. SPT6, SND1, and hTERT were highly expressed simultaneously in CRC tissues, both from the murine model and patients with CRC in situ, and pairwise expression among these three factors showed a significant positive correlation. In brief, our research demonstrated that SPT6 synergized with SND1 to promote CRC development by targeting hTERT and put forward that inhibiting the SPT6-SND1-hTERT axis may create a therapeutic vulnerability in CRC.


Assuntos
Neoplasias do Colo/patologia , Endonucleases/genética , Telomerase/metabolismo , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA