Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Biosens Bioelectron ; 256: 116278, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608497

RESUMO

The DNA-based logic circuit, constructed to mimic biochemical reaction networks, is highly significant in detecting biomarkers at the molecular level. The differences in the expression levels of microRNAs (miRNAs) within different types of cells provide hope for distinguishing cell subtypes. However, reliance on a single miRNA often leads to unreliable results. Herein, we constructed an enzyme-triggered cascade logic circuit based on the AND gate, which is capable of generating corresponding fluorescence signals in the presence of target miRNAs. The introduction of apurinic/apyrimidinic (AP) sites effectively reduces the likelihood of false signal generation. Amplification of the fluorescence signal relies on the catalytic hairpin assembly and the repetitive reuse of the multicomponent nucleic acid enzyme (MNAzyme). We demonstrated that the logic circuit can not only distinguish cancer cells from normal cells but also identify different types of cancer cells. The programmability of the logic circuits and the simplicity of the assay system allow us to modify the functional sequences to recognize different types of biomarkers, thus providing a reference for the identification of various cell subtypes.


Assuntos
Técnicas Biossensoriais , DNA , MicroRNAs , Humanos , Técnicas Biossensoriais/métodos , MicroRNAs/genética , DNA/genética , DNA/química , Neoplasias/genética , Computadores Moleculares , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética
2.
Anal Chem ; 96(10): 4213-4223, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38427460

RESUMO

The accurate quantification of cancer-derived exosomes, which are emerging as promising noninvasive biomarkers for liquid biopsies in the early diagnosis of cancer, is becoming increasingly imperative. In our work, we developed a magnetically controlled photothermal, colorimetric, and fluorescence trimode aptasensor for human gastric cancer cell (SGC-7901)-derived exosomes. This sensor relied on CP/Mn-PBA DSNBs nanocomposites, created by decorating copper peroxide (CP) nanodots on polyethyleneimine-modified manganese-containing Prussian blue analogues double-shelled nanoboxes (PEI-Mn-PBA DSNBs). Through self-assembly, we attached CD63 aptamer-labeled CP/Mn-PBA DSNBs (Apt-CP/Mn-PBA DSNBs) to complementary DNA-labeled magnetic beads (cDNA-MB). During exosome incubation, these aptamers preferentially formed complexes with exosomes, and we efficiently removed the released CP/Mn-PBA DSNBs by using magnetic separation. The CP/Mn-PBA DSNBs exhibited high photoreactivity and photothermal conversion efficiency under near-infrared (NIR) light, leading to temperature variations under 808 nm irradiation, correlating with different exosome concentrations. Additionally, colorimetric detection was achieved by monitoring the color change in a 3,3',5,5'-tetramethylbenzidine (TMB) system, facilitated by PEI modification, NIR-enhanced peroxidase-like activity of CP/Mn-PBA DSNBs and their capacity to generate Cu2+ and H2O2 under acidic conditions. Moreover, in the presence of Cu2+ and ascorbic acid (AA), DNA sequences could form dsDNA-templated copper nanoparticles (CuNPs), which emitted strong fluorescence at around 575 nm. Increasing exosome concentrations correlated with decreases in temperature, absorbance, and fluorescence intensity. This trimode biosensor demonstrated satisfactory ability in differentiating gastric cancer patients from healthy individuals using human serum samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Exossomos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Cobre , Peróxidos , Peróxido de Hidrogênio , Colorimetria
3.
Anal Chem ; 96(10): 4120-4128, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412037

RESUMO

Efficient and accurate acquisition of cellular biomolecular information is crucial for exploring cell fate, achieving early diagnosis, and the effective treatment of various diseases. However, current DNA biosensors are mostly limited to single-target detection, with few complex logic circuits for comprehensive analysis of three or more targets. Herein, we designed a sea anemone-like DNA nanomachine based on DNA strand displacement composed of three logic gates (YES-AND-YES) and delivered into the cells using gold nano bipyramid carriers. The AND gate activation depends on the trigger chain released by upstream DNA strand displacement reactions, while the output signal relies on the downstream DNAzyme structure. Under the influence of diverse inputs (including enzymes, miRNA, and metal ions), the interconnected logic gates simultaneously perform logical analysis on multiple targets, generating a unique output signal in the YES/NO format. This sensor can successfully distinguish healthy cells from tumor cells and can be further used for the diagnosis of different tumor cells, providing a promising platform for accurate cell-type identification.


Assuntos
DNA Catalítico , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , DNA/química , DNA Catalítico/química , Lógica , Ouro , Computadores Moleculares
4.
Talanta ; 271: 125710, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295448

RESUMO

Breath exhaled hydrogen cyanide (HCN) has been identified to be associated with several respiratory diseases. Accurately distinguishing the concentration and release rate of different HCN sources is of great value in clinical research. However, there are still significant challenges due to the high adsorption and low concentration characteristics of exhaled HCN. In this study, a two-compartment kinetic model method based on negative photoionization mass spectrometry was developed to simultaneously determine the kinetic parameters including concentrations and release rates in the airways and alveoli. The influences of the sampling line diameter, length, and temperature on the response time of the sampling system were studied and optimized, achieving a response time of 0.2 s. The negative influence of oral cavity-released HCN was reduced by employing a strategy based on anatomical lung volume calculation. The calibration for HCN in the dynamic range of 0.5-100 ppbv and limit of detection (LOD) at 0.3 ppbv were achieved. Subsequently, the experiments of smoking, short-term passive smoking, and intake of bitter almonds were performed to examine the influences of endogenous and exogenous factors on the dynamic parameters of the model method. The results indicate that compared with steady-state concentration measurements, the kinetic parameters obtained using this model method can accurately and significantly reflect the changes in different HCN sources, highlighting its potential for HCN-related disease research.


Assuntos
Testes Respiratórios , Cianeto de Hidrogênio , Testes Respiratórios/métodos , Espectrometria de Massas/métodos , Cianeto de Hidrogênio/análise , Boca , Pulmão/química
5.
iScience ; 27(1): 108691, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38205254

RESUMO

Tumors maintain an alkaline intracellular environment to enable rapid growth. The proton exporter NHE1 participates in maintenance of this pH gradient. However, whether targeting NHE1 could inhibit the growth of tumor cells remains unknown. Here, we report that the NHE1 inhibitor Hexamethylene amiloride (HA) efficiently suppresses the growth of AML cell lines. Moreover, HA combined with venetoclax synergized to efficiently inhibit the growth of AML cells. Interestingly, lysosomes are the main contributors to the synergism of HA and venetoclax in inhibiting AML cells. Most importantly, the combination of HA and venetoclax also had prominent anti-leukemia effects in both xenograft models and bone marrow samples from AML patients. In summary, our results provide evidence that the NHE1 inhibitor HA or its combination with venetoclax efficiently inhibits the growth of AML in vitro and in vivo.

6.
Gene ; 901: 148168, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38244949

RESUMO

BACKGROUND: Recurrent pregnancy loss (RPL) is associated with variable causes. Its etiology remains unexplained in about half of the cases, with no effective treatment available. Individuals with RPL have an irregular iron metabolism. In the present study, we identified key genes impacting iron metabolism that could be used for diagnosing and treating RPL. METHODS: We obtained gene expression profiles from the Gene Expression Omnibus (GEO) database. The Molecular Signatures Database was used to identify 14 gene sets related to iron metabolism, comprising 520 iron metabolism genes. Differential analysis and a weighted gene co-expression network analysis (WGCNA) of gene expression revealed two iron metabolism-related hub genes. Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry were used on clinical samples to confirm our results. The receiver operating characteristic (ROC) analysis and immune infiltration analysis were conducted. In addition, we analyzed the distribution of genes and performed CellChat analysis by single-cell RNA sequencing. RESULTS: The expression of two hub genes, namely, CDGSH iron sulfur domain 2 (CISD2)and Cytochrome P450 family 17 subfamily A member 1 (CYP17A1), were reduced in RPL, as verified by both qPCR and immunohistochemistry. The Gene Ontology (GO) analysis revealed the genes predominantly engaged in autophagy and iron metabolism. The area under the curve (AUC) demonstrated better diagnostic performance for RPL using CISD2 and CYP17A1. The single-cell transcriptomic analysis of RPL demonstrated that CISD2 is expressed in the majority of cell subpopulations, whereas CYP17A1 is not. The cell cycle analysis revealed highly active natural killer (NK) cells that displayed the highest communications with other cells, including the strongest interaction with macrophages through the migratory inhibitory factor (MIF) pathway. CONCLUSIONS: Our study suggested that CISD2 and CYP17A1 genes are involved in abnormal iron metabolism, thereby contributing to RPL. These genes could be used as potential diagnostic and therapeutic markers for RPL.


Assuntos
Ferro , RNA , Feminino , Gravidez , Humanos , Sequência de Bases , Análise de Sequência de RNA , Área Sob a Curva , Esteroide 17-alfa-Hidroxilase
7.
J Immunother Cancer ; 11(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37739440

RESUMO

BACKGROUND: Pancreatic cancer (PAC) is one of the most malignant cancer types and immunotherapy has emerged as a promising treatment option. PAC cells undergo metabolic reprogramming, which is thought to modulate the tumor microenvironment (TME) and affect immunotherapy outcomes. However, the metabolic landscape of PAC and its association with the TME remains largely unexplored. METHODS: We characterized the metabolic landscape of PAC based on 112 metabolic pathways and constructed a novel metabolism-related signature (MBS) using data from 1,188 patients with PAC. We evaluated the predictive performance of MBS for immunotherapy outcomes in 11 immunotherapy cohorts from both bulk-RNA and single-cell perspectives. We validated our results using immunohistochemistry, western blotting, colony-formation assays, and an in-house cohort. RESULTS: MBS was found to be negatively associated with antitumor immunity, while positively correlated with cancer stemness, intratumoral heterogeneity, and immune resistant pathways. Notably, MBS outperformed other acknowledged signatures for predicting immunotherapy response in multiple immunotherapy cohorts. Additionally, MBS was a powerful and robust biomarker for predicting prognosis compared with 66 published signatures. Further, we identified dasatinib and epothilone B as potential therapeutic options for MBS-high patients, which were validated through experiments. CONCLUSIONS: Our study provides insights into the mechanisms of immunotherapy resistance in PAC and introduces MBS as a robust metabolism-based indicator for predicting response to immunotherapy and prognosis in patients with PAC. These findings have significant implications for the development of personalized treatment strategies in patients with PAC and highlight the importance of considering metabolic pathways and immune infiltration in TME regulation.


Assuntos
Imunoterapia , Neoplasias Pancreáticas , Humanos , Consenso , Neoplasias Pancreáticas/terapia , Aprendizado de Máquina , Microambiente Tumoral , Neoplasias Pancreáticas
8.
Br J Haematol ; 202(5): 971-984, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409755

RESUMO

Venetoclax inhibits acute myeloid leukaemia by inhibiting BCL-2 targeting, and a combination regimen with venetoclax has been explored. Although these regimens produce better clinical results, the vast majority of patients still suffer from disease recurrence or primary drug resistance. Metformin has been demonstrated to induce apoptosis in cancer cells. However, whether it can synergize with venetoclax and the underlying mechanisms of metformin-induced apoptosis are not fully understood. In this study, we investigated the effect of metformin and venetoclax on the growth of AML cells in vitro and in vivo. In both Molm13 and THP-1 cell lines, metformin and venetoclax synergistically inhibited the proliferation and induced apoptosis of leukaemia cells. Most importantly, the combination of metformin and venetoclax treatment significantly increased the expression levels of the endoplasmic reticulum (ER) stress-related marker CHOP, for example, in AML cell lines. Knockdown of CHOP markedly attenuated the metformin- and venetoclax-induced cell apoptosis. Moreover, the combination of metformin and venetoclax demonstrated prominent anti-leukaemia effects in xenograft models and bone marrow samples from AML patients. In summary, the combination of metformin and venetoclax showed enhanced anti-leukaemia activity with acceptable safety in AML patients, representing a new combinatorial strategy worth further clinical investigation to treat AML.


Assuntos
Leucemia Mieloide Aguda , Metformina , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Apoptose , Estresse do Retículo Endoplasmático
9.
Metabolites ; 13(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37512577

RESUMO

Despite surpassing lung cancer as the most frequently diagnosed cancer, female breast cancer (BC) still lacks rapid detection methods for screening that can be implemented on a large scale in practical clinical settings. However, urine is a readily available biofluid obtained non-invasively and contains numerous volatile organic metabolites (VOMs) that offer valuable metabolic information concerning the onset and progression of diseases. In this work, a rapid method for analysis of VOMs in urine by using high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS) coupled with dynamic purge injection. A simple pretreatment process of urine samples by adding acid and salt was employed for efficient VOM sampling, and the numbers of metabolites increased and the detection sensitivity was improved after the acid (HCl) and salt (NaCl) addition. The established mass spectrometry detection method was applied to analyze a set of training samples collected from a local hospital, including 24 breast cancer patients and 27 healthy controls. Statistical analysis techniques such as principal component analysis, partial least squares discriminant analysis, and the Mann-Whitney U test were used, and nine VOMs were identified as differential metabolites. Finally, acrolein, 2-pentanone, and methyl allyl sulfide were selected to build a metabolite combination model for distinguishing breast cancer patients from the healthy group, and the achieved sensitivity and specificity were 92.6% and 91.7%, respectively, according to the receiver operating characteristic curve analysis. The results demonstrate that this technology has potential to become a rapid screening tool for breast cancer, with significant room for further development.

10.
Cell Mol Life Sci ; 80(8): 230, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498355

RESUMO

The aberrant activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is known to contribute to the pathogenesis of various human inflammation-related diseases. However, to date, no small-molecule NLRP3 inhibitor has been used in clinical settings. In this study, we have identified SB-222200 as a novel direct NLRP3 inhibitor through the use of drug affinity responsive target stability assay, cellular thermal shift assay, and surface plasmon resonance analysis. SB-222200 effectively inhibits the activation of the NLRP3 inflammasome in macrophages, while having no impact on the activation of NLRC4 or AIM2 inflammasome. Furthermore, SB-222200 directly binds to the NLRP3 protein, inhibiting NLRP3 inflammasome assembly by blocking the NEK7 - NLRP3 interaction and NLRP3 oligomerization. Importantly, treatment with SB-222200 demonstrates alleviation of NLRP3-dependent inflammatory diseases in mouse models, such as monosodium urate crystal-induced peritonitis and dextran sulfate sodium-induced acute intestinal inflammation. Therefore, SB-222200 holds promise as a lead compound for the development of NLRP3 inhibitors to combat NLRP3-driven disease and serves as a versatile tool for pharmacologically investigating NLRP3 biology.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Peritonite , Camundongos , Animais , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Peritonite/induzido quimicamente , Peritonite/tratamento farmacológico , Peritonite/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Interleucina-1beta/metabolismo
11.
Nat Commun ; 14(1): 4274, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460463

RESUMO

The tyrosine kinase inhibitor (TKI) Sunitinib is one the therapies approved for advanced renal cell carcinoma. Here, we undertake proteogenomic profiling of 115 tumors from patients with clear cell renal cell carcinoma (ccRCC) undergoing Sunitinib treatment and reveal the molecular basis of differential clinical outcomes with TKI therapy. We find that chromosome 7q gain-induced mTOR signaling activation is associated with poor therapeutic outcomes with Sunitinib treatment, whereas the aristolochic acid signature and VHL mutation synergistically caused enhanced glycolysis is correlated with better prognosis. The proteomic and phosphoproteomic analysis further highlights the responsibility of mTOR signaling for non-response to Sunitinib. Immune landscape characterization reveals diverse tumor microenvironment subsets in ccRCC. Finally, we construct a multi-omics classifier that can detect responder and non-responder patients (receiver operating characteristic-area under the curve, 0.98). Our study highlights associations between ccRCC molecular characteristics and the response to TKI, which can facilitate future improvement of therapeutic responses.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteogenômica , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Sunitinibe/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Proteômica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Serina-Treonina Quinases TOR/genética , Microambiente Tumoral
12.
Anal Chem ; 95(15): 6351-6357, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37014131

RESUMO

Hydrogen cyanide (HCN) is a well-known toxic compound in many fields. The trace amount of endogenous HCN in human exhalation has been associated with the presence of Pseudomonas aeruginosa (PA) infection in cystic fibrosis (CF) patients. Online monitoring of HCN profile is promising to screen PA infection rapidly and accurately. In this study, a gas flow-assisted negative photoionization (NPI) mass spectrometry method was developed for monitoring the single-exhalation HCN profile. The sensitivity could be optimized by introducing helium to eliminate the humidity influence and reduce the low mass cutoff effect, with improvements of a factor 150 observed. By employing a purging gas procedure and minimizing the length of the sample line, the residual and response time were greatly reduced. The limit of detection (LOD) of 0.3 ppbv and time resolution of 0.5 s were achieved. HCN profiles of exhalations from different volunteers before or after gargling with water were detected to show the performance of the method. All profiles showed a sharp peak and a stable end-tidal plateau, representing the concentration of oral cavity and end-tidal gas, respectively. The HCN concentration based on the plateau of the profile showed better reproducibility and accuracy, which indicates this method has potential application in the detection of PA infection in CF patients.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Expiração , Reprodutibilidade dos Testes , Testes Respiratórios/métodos , Infecções por Pseudomonas/diagnóstico , Espectrometria de Massas/métodos
13.
Theor Appl Genet ; 136(5): 120, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37103626

RESUMO

KEY MESSAGE: The diploid wheat recessive stem rust resistance gene SrTm4 was fine-mapped to a 754-kb region on chromosome arm 2AmL and potential candidate genes were identified. Race Ug99 of Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem (or black) rust is one of the most serious threats to global wheat production. The identification, mapping, and deployment of effective stem rust resistance (Sr) genes are critical to reduce this threat. In this study, we generated SrTm4 monogenic lines and found that this gene confers resistance to North American and Chinese Pgt races. Using a large mapping population (9522 gametes), we mapped SrTm4 within a 0.06 cM interval flanked by marker loci CS4211 and 130K1519, which corresponds to a 1.0-Mb region in the Chinese Spring reference genome v2.1. A physical map of the SrTm4 region was constructed with 11 overlapping BACs from the resistant Triticum monococcum PI 306540. Comparison of the 754-kb physical map with the genomic sequence of Chinese Spring and a discontinuous BAC sequence of DV92 revealed a 593-kb chromosomal inversion in PI 306540. Within the candidate region, we identified an L-type lectin-domain containing receptor kinase (LLK1), which was disrupted by the proximal inversion breakpoint, as a potential candidate gene. Two diagnostic dominant markers were developed to detect the inversion breakpoints. In a survey of T. monococcum accessions, we identified 10 domesticated T. monococcum subsp. monococcum genotypes, mainly from the Balkans, carrying the inversion and showing similar mesothetic resistant infection types against Pgt races. The high-density map and tightly linked molecular markers developed in this study are useful tools to accelerate the deployment of SrTm4-mediated resistance in wheat breeding programs.


Assuntos
Basidiomycota , Melhoramento Vegetal , Triticum/genética , Mapeamento Cromossômico , Genótipo , Genes de Plantas , Doenças das Plantas/genética , Resistência à Doença/genética
14.
Cancer Sci ; 114(8): 3101-3113, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36951402

RESUMO

AKR7A3 is a member of the aldo-keto reductase (AKR) protein family, whose primary purpose is to reduce aldehydes and ketones to generate primary and secondary alcohols. It has been reported that AKR7A3 is downregulated in pancreatic cancer (PC). However, the mechanism underlying the effects of AKR7A3 in PC remains largely unclarified. Here, we explored the biological function, molecular mechanism and clinical relevance of AKR7A3 in pancreatic ductal adenocarcinoma (PDAC). AKR7A3 expression was downregulated in PDAC compared with adjacent normal tissues, and the lower AKR7A3 expression was related to poor prognosis. In addition, our results demonstrated that AKR7A3 could be a potential diagnostic marker for PDAC, especially in the early stages. Knockdown of AKR7A3 promoted PDAC progression and chemoresistance, while inhibiting autophagy flux. Mechanistically, AKR7A3 affected the metastasis, autophagy, and chemoresistance of PDAC by regulating PHGDH. Overall, the present study suggests that AKR7A3 inhibits PDAC progression by regulating PHGDH-induced autophagy. In addition, AKR7A3 inhibits chemoresistance via regulating PHGDH and may serve as a new therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Prognóstico , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Autofagia/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pancreáticas
15.
World J Surg Oncol ; 21(1): 98, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927438

RESUMO

BACKGROUND: Papillary renal cell carcinoma (PRCC) can be divided into type 1 (PRCC1) and type 2 (PRCC2) and PRCC2 share a more invasive phenotype and worse prognosis. This study aims to identify potential prognostic and therapeutic biomarkers in PRCC2. METHODS: A cohort from The Cancer Genome Atlas and two datasets from Gene Expression Omnibus were examined. Common differentially expressed genes (DEGs) were screened and potential biomarkers were explored by using Kaplan-Meier method and cox regression analysis. Functional enrichment analysis was utilized to evaluate the potential biological functions. Tumor infiltrating immune cells were estimated by CIBERSORT algorithm. Ninety-two PRCC2 samples from Fudan University Shanghai Cancer Center were obtained, and immunostaining was performed to validate prognostic and therapeutic significance of the potential biomarker. RESULTS: PRCC2 has worse overall survival and shares distinct molecular characteristics from PRCC1. There was significant higher expression level of Targeting protein for Xklp2 (TPX2) in PRCC2 compared with normal tissues. Higher expression level of TPX2 was significantly associated with worse overall survival in PRCC2 and kinesin family genes expression were found significantly elevated in high risk PRCC2. Abundance of tumor infiltrating M1 macrophage was significantly higher in PRCC2 and it was also associated with worse overall survival. In the FUSCC cohort, higher TPX2 expression was significantly correlated with worse overall and progression-free survival. Retrospective analysis indicated that mTOR inhibitor (everolimus) had greater efficacy in the high-risk group than in the low-risk group (overall response rate: 28.6% vs. 16.7%) and that everolimus had greater efficacy than sunitinib in the high-risk group (overall response rate: 28.6% vs. 20%). CONCLUSIONS: TPX2 was a prognostic and therapeutic biomarker in PRCC2. Higher abundance of tumor infiltrating M1 macrophage was significantly associated with worse overall survival in PRCC2. mTOR inhibitors may have good efficacy in patients with high-risk PRCC2.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Prognóstico , Estudos Retrospectivos , Everolimo/uso terapêutico , China , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
16.
Anal Chem ; 95(8): 4235-4242, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36795494

RESUMO

Ethyl carbamate (EC), a carcinogenic compound, is naturally produced in fermented foods and alcoholic beverages. Rapid and accurate measurement of EC is necessary and important for quality control and safety evaluation of Chinese liquor, a traditionally distilled spirit with the highest consumption in China, but it remains a great challenge. In this work, a direct injection mass spectrometry (DIMS) with time-resolved flash-thermal-vaporization (TRFTV) and acetone-assisted high-pressure photoionization (HPPI) strategy has been developed. EC was rapidly separated from the main matrix components, ethyl acetate (EA) and ethanol, by the TRFTV sampling strategy due to the retention time difference of these three compounds with large boiling point differences on the inner wall of a poly(tetrafluoroethylene) (PTFE) tube. Therefore, the matrix effect of EA and ethanol was effectively eliminated. The acetone-assisted HPPI source was developed for efficient ionization of EC through a photoionization-induced proton transfer reaction between EC molecules and protonated acetone ions. The accurate quantitative analysis of EC in liquor was achieved by introducing an internal standard method (ISM) using deuterated EC (d5-EC). As a result, the limit of detection (LOD) for EC was 8.88 µg/L with the analysis time of only 2 min, and the recoveries ranged from 92.3 to 113.1%. Finally, the prominent capability of the developed system was demonstrated by rapid determination of trace EC in Chinese liquors with different flavor types, exhibiting wide potential applications in online quality control and safety evaluation of not only Chinese liquors but also other liquor and alcoholic beverages.

18.
Clin J Pain ; 39(2): 68-75, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36650602

RESUMO

OBJECT: To estimate the contrast dispersion short-term clinical efficacy and safety of ultrasound (US)-guided transforaminal steroid injection (TFSI) compared with computed tomography (CT) guidance for the treatment of cervical radicular pain. METHOD: A total of 430 patients with cervical radicular pain from cervical herniated disk or cervical spondylosis were recruited in the randomized, single-blind, controlled, noninferiority trial. The patients were randomly assigned to receive either the US-guided or CT-guided TFSI for 1 affected cervical nerve. The dispersion pattern of contrast was monitored at the time of TFSI in both groups, using CT. Patients were assessed for pain intensity by numeric rating scale (NrS) and functional disability by Neck Disability Index (NDI) at baseline, 1 and 3 months after the intervention. Complications were also recorded. RESULTS: The satisfactory rate of contrast distribution was respectively 92.1% in US group and 95.8% in CT group. Pain reduction and functional improvement were showed in both groups during follow-up. Statistical difference was not observed in the decrease in NRS pain scores and NDI scores between 2 groups with F =1.050, P =0.306 at 1 month and F =0.103, P =0.749 at 3 months after intervention. No permanent and severe complications were observed. CONCLUSIONS: This study demonstrated that US provided a noninferior injectate spread pattern and similar improvement of radicular pain and functional status when compared with CT-guided TFSI. US may be advantageous during this procedure because it allows visualization of critical vessels and avoids radiation exposure.


Assuntos
Cervicalgia , Radiculopatia , Humanos , Método Simples-Cego , Cervicalgia/diagnóstico por imagem , Cervicalgia/tratamento farmacológico , Cervicalgia/etiologia , Resultado do Tratamento , Vértebras Cervicais/diagnóstico por imagem , Ultrassonografia de Intervenção/métodos , Fluoroscopia/métodos , Tomografia Computadorizada por Raios X/métodos , Esteroides/uso terapêutico , Tomografia , Radiculopatia/diagnóstico por imagem , Radiculopatia/tratamento farmacológico , Injeções Epidurais/métodos
19.
Asian J Androl ; 25(1): 86-92, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35532558

RESUMO

We aimed to study radiomics approach based on biparametric magnetic resonance imaging (MRI) for determining significant residual cancer after androgen deprivation therapy (ADT). Ninety-two post-ADT prostate cancer patients underwent MRI before prostatectomy (62 with significant residual disease and 30 with complete response or minimum residual disease [CR/MRD]). Totally, 100 significant residual, 52 CR/MRD lesions, and 70 benign tissues were selected according to pathology. First, 381 radiomics features were extracted from T2-weighted imaging, diffusion-weighted imaging, and apparent diffusion coefficient (ADC) maps. Optimal features were selected using a support vector machine with a recursive feature elimination algorithm (SVM-RFE). Then, ADC values of significant residual, CR/MRD lesions, and benign tissues were compared by one-way analysis of variance. Logistic regression was used to construct models with SVM features to differentiate between each pair of tissues. Third, the efficiencies of ADC value and radiomics models for differentiating the three tissues were assessed by area under receiver operating characteristic curve (AUC). The ADC value (mean ± standard deviation [s.d.]) of significant residual lesions ([1.10 ± 0.02] × 10-3 mm2 s-1) was significantly lower than that of CR/MRD ([1.17 ± 0.02] × 10-3 mm2 s-1), which was significantly lower than that of benign tissues ([1.30 ± 0.02] × 10-3 mm2 s-1; both P < 0.05). The SVM feature models were comparable to ADC value in distinguishing CR/MRD from benign tissue (AUC: 0.766 vs 0.792) and distinguishing residual from benign tissue (AUC: 0.825 vs 0.835) (both P > 0.05), but superior to ADC value in differentiating significant residual from CR/MRD (AUC: 0.748 vs 0.558; P = 0.041). Radiomics approach with biparametric MRI could promote the detection of significant residual prostate cancer after ADT.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Antagonistas de Androgênios/uso terapêutico , Androgênios , Neoplasia Residual , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos
20.
Int Wound J ; 20(4): 1008-1019, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36056472

RESUMO

TNF-stimulated gene (TSG-6) was reported to suppress hypertrophic scar (HS) formation in a rabbit ear model, and the overexpression of TSG-6 in human HS fibroblasts (HSFs) was found to induce their apoptotic death. The molecular basis for these findings, however, remains to be clarified. HSFs were subjected to TSG-6 treatment. Treatment with TSG-6 significantly suppressed HSF proliferation and induced them to undergo apoptosis. Moreover, TSG-6 exposure led to reductions in collagen I, collagen III, and α-SMA mRNA and protein levels, with a corresponding drop in proliferating cell nuclear antigen (PCNA) expression indicative of impaired proliferative activity. Endoplasmic reticulum (ER) stress was also suppressed in these HSFs as demonstrated by decreases in Bip and p-IRE1α expression, downstream inositol requiring enzyme 1 alpha (IRE1α) -Tumor necrosis factor receptor associated factor 2 (TRAF2) pathway signalling was inhibited and treated cells failed to induce NF-κB, TNF-α, IL-1ß, and IL-6 expression. Overall, ER stress was found to trigger inflammatory activity in HSFs via the IRE1α-TRAF2 axis, as confirmed with the specific inhibitor of IRE1α STF083010. Additionally, the effects of TSG-6 on apoptosis, collagen I, collagen III, α-SMA, and PCNA of HSFs were reversed by the IRE1α activator thapsigargin (TG). These data suggest that TSG-6 administration can effectively suppress the proliferation of HSFs in part via the inhibition of IRE1α-mediated ER stress-induced inflammation (IRE1α/TRAF2/NF-κB signalling).


Assuntos
Cicatriz Hipertrófica , NF-kappa B , Animais , Humanos , Coelhos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 2 Associado a Receptor de TNF/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Cicatriz Hipertrófica/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Fibroblastos , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA