Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 255: 119186, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777297

RESUMO

The removal of formaldehyde (FA) is vital for indoor air quality management in light of its carcinogenic propensity and adverse environmental impact. A series of copper manganite spinel structures (e.g., CuMn2O4) are prepared using the sol-gel combustion method and treated with reduction or oxidation pretreatment at 300 °C condition. Accordingly, CuMn2O4-O ("O" suffix for oxidation pre-treatment in air) is identified as the best performer to achieve 100% conversion (XFA) of FA (50 ppm) at 90 °C; its performance, if assessed in terms of reaction kinetic rate (r) at XFA = 10%, is 5.02E-03 mmol g-1 h-1. The FA removal performance increases systematically with decreases in flow rate, FA concentration, and relative humidity (RH) or with increases in bed mass. The reaction pathways and intermediates of FA catalytic oxidation on CuMn2O4-A are studied with density functional theory simulations, temperature-programmed characterization experiments, and in-situ diffuse reflectance infrared Fourier transform spectroscopy. The synergistic combination of large quantities of adsorbed oxygen (OA) species and oxidized metal species (e.g., Cu2+) contribute to the enhanced catalytic performance of CuMn2O4-O to oxidize FA into CO2 with the reaction intermediates of H2CO2 (DOM), HCOO-, and CO. The present study is expected to provide valuable insights into the thermocatalytic oxidation of FA over spinel CuMn2O4 materials and their catalytic performances in relation to the key process variables.

2.
J Colloid Interface Sci ; 665: 1029-1042, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579386

RESUMO

Formaldehyde (FA), a carcinogenic oxygenated volatile organic compound, is present ubiquitously in indoor air. As such, it is generally regarded as a critical target for air quality management. The oxidative removal of FA under dark and room-temperature (RT) conditions is of practical significance. A series of ternary nickel-cobalt-manganese oxide-supported platinum catalysts (Pt/NiCoMnO4) have been synthesized for FA oxidative removal at RT in the dark. Their RT conversion values for 50 ppm FA (XFA) at 5,964 h-1 gas hourly space velocity (GHSV) decrease in the following order: 1 wt% Pt/NiCoMnO4 (100 %) > 0.5 wt% Pt/NiCoMnO4 (25 %) > 0.05 wt% Pt/NiCoMnO4 (14 %) > NiCoMnO4 (6 %). The catalytic performance of 1 wt% Pt/NiCoMnO4 has been examined further under the control of various process variables (e.g., catalyst mass, flow rate, relative humidity, FA concentration, time on stream, and molecular oxygen content). The catalytic oxidation of FA at low temperatures (e.g., RT and 60 °C) is accounted for by Langmuir-Hinshelwood mechanism (single-site competitive-adsorption), while Mars van Krevelen kinetics is prevalent at higher temperatures. In situ diffuse-reflectance infrared Fourier-transform spectroscopy reveals that FA oxidation proceeds through a series of reaction intermediates such as DOM, HCOO-, and CO32-. Based on the density functional theory simulations, the unique electronic structures of the nearest surface atoms (platinum and nickel) are suggested to be responsible for the superior catalytic activity of Pt/NiCoMnO4.

3.
Sci Total Environ ; 892: 163924, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37268122

RESUMO

Titanium dioxide-supported platinum (Pt@TiO2) is regarded as a highly efficient photothermal catalyst to degrade various volatile organic compounds (VOCs). To learn more about the hybrid adsorption/catalysis process of VOCs on Pt@TiO2, their dynamic adsorption behavior on the catalyst surface was studied using the single and multicomponent gas phase of FA (i.e., the latter with four aromatic compounds of benzene, toluene, m-xylene, and styrene (BTXS)) through the control of key operating variables (e.g., VOCs concentration, relative humidity (RH) levels, and dosage). According to the performance evaluation, the doping of TiO2 with Pt metal ions significantly enhanced the FA adsorption capacity (e.g., by 50 % higher than the pristine TiO2) with increased OH (OII) surface active sites (reactivity) and surface porosity. However, in the co-presence of BTXS and water vapor, the adsorption affinity for FA vapor declined by 2 to 3 folds of magnitude with a competitive inhibition of the adsorption interaction on the Pt@TiO2 surface. According to the kinetic and isotherms analysis, a complex, multilayered physicochemical process appears to govern the adsorption of FA molecules onto Pt@TiO2 surface. Overall, the outcomes of this work are helpful to verify the enhanced removal potential of Pt@TiO2 against FA through sequential adsorption and catalytic reaction mechanisms.


Assuntos
Platina , Compostos Orgânicos Voláteis , Adsorção , Tolueno , Titânio/química , Catálise , Formaldeído
4.
Adv Sci (Weinh) ; 10(21): e2300079, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37114840

RESUMO

Formaldehyde (HCHO: FA) is one of the most abundant but hazardous gaseous pollutants. Transition metal oxide (TMO)-based thermocatalysts have gained much attention in its removal due to their excellent thermal stability and cost-effectiveness. Herein, a comprehensive review is offered to highlight the current progress in TMO-based thermocatalysts (e.g., manganese, cerium, cobalt, and their composites) in association with the strategies established for catalytic removal of FA. Efforts are hence made to describe the interactive role of key factors (e.g., exposed crystal facets, alkali metal/nitrogen modification, type of precursors, and alkali/acid treatment) governing the catalytic activity of TMO-based thermocatalysts against FA. Their performance has been evaluated further between two distinctive operation conditions (i.e., low versus high temperature) based on computational metrics such as reaction rate. Accordingly, the superiority of TMO-based composite catalysts over mono- and bi-metallic TMO catalysts is evident to reflect the abundant surface oxygen vacancies and enhanced FA adsorptivity of the former group. Finally, the present challenges and future prospects for TMO-based catalysts are discussed with respect to the catalytic oxidation of FA. This review is expected to offer valuable information to design and build high performance catalysts for the efficient degradation of volatile organic compounds.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 292: 122431, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36753865

RESUMO

In this work, a ratiometric fluorometric sensor based on nickel nanoclusters (NiNCs)-europium complex (NiNCs-Eu3+) was constructed for the highly selectivity detection of tetracyclines (TCs) in water samples. In the presence of TCs, the blue fluorescence of the sensor NiNCs-Eu3+ was quenched at 430 nm and the characteristic red fluorescence of Eu3+-TCs appeared at 620 nm because of the combined help of inner filter effect (IFE) and antenna effect. Under the optimized conditions (100 mM Eu3+ (100 µL); temperature (25℃); reaction time (10 min), HEPES buffer solution (pH = 7.0)), the sensor offered a wide detection range of tetracycline (TC) and oxytetracycline (OTC) from 0.1 to 50 µM with the detection limit (LOD) of 25 nM and 21 nM, respectively. Moreover, the sensor was able to detect of TC and OTC in tap and lake water with high recovery rate (89.10%-97.60%). In addition, the portable paper-based sensor was constructed using filter paper embedded with NiNCs-Eu3+. The distinct fluorescent color of the paper-based sensor varied from bright blue to red against different concentrations of TC and OTC. These above findings demonstrated the potential for wide application of as-prepared ratio metric fluorescence sensor for visual detection of TCs in water samples.


Assuntos
Oxitetraciclina , Tetraciclinas , Európio , Corantes Fluorescentes , Níquel , Antibacterianos/análise , Água , Espectrometria de Fluorescência , Limite de Detecção
6.
J Hazard Mater ; 444(Pt A): 130422, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36434918

RESUMO

Aluminum is a relatively inexpensive and abundant metal for the mass production of metal-organic frameworks (MOFs). Aluminum-based MOFs (Al-MOFs) have drawn a good deal of research interest due to their unique properties for diverse applications (e.g., excellent chemical and structural stability). This review has been organized to highlight the current progress achieved in the synthesis/functionalization of Al-MOF materials with the special emphasis on their sensing application, especially toward metal ion pollutants in the liquid phase. To learn more about the utility of Al-MOF-based sensing systems, their performances have been evaluated for diverse metallic components in reference to many other types of sensing systems (in terms of the key quality assurance (QA) criteria such as limit of detection (LOD)). Finally, the challenges and outlook for Al-MOF-based sensing systems are discussed to help expand their real-world applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA