Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029924

RESUMO

BACKGROUND: Lenvatinib plus PD-1 inhibitors and interventional (LPI) therapy have demonstrated promising treatment effects in unresectable hepatocellular carcinoma (HCC). However, biomarkers for predicting the response to LPI therapy remain to be further explored. We aimed to develop a radiomics model to noninvasively predict the efficacy of LPI therapy. METHODS: Clinical data of patients with HCC receiving LPI therapy were collected in our institution. The clinical model was built with clinical information. Nine machine learning classifiers were tested and the multilayer perceptron classifier with optimal performance was used as the radiomics model. The clinical-radiomics model was constructed by integrating clinical and radiomics scores through logistic regression analysis. RESULTS: 151 patients were enrolled in this study (2:1 randomization, 101 and 50 in the training and validation cohorts), of which three achieved complete response, 69 showed partial response, 46 showed stable disease, and 33 showed progressive disease. The objective response rate, disease control rate, and conversion resection rates were 47.7, 78.1 and 23.2%. 14 features were selected from the initially extracted 1223 for radiomics model construction. The area under the curves of the radiomics model (0.900 for training and 0.893 for validation) were comparable to that of the clinical-radiomics model (0.912 for training and 0.892 for validation), and both were superior to the clinical model (0.669 for training and 0.585 for validation). Meanwhile, the radiomics model can categorize participants into high-risk and low-risk groups for progression-free survival (PFS) and overall survival (OS) in the training (HR 1.913, 95% CI 1.121 to 3.265, p=0.016 for PFS; HR 4.252, 95% CI 2.051 to 8.816, p=0.001 for OS) and validation sets (HR 2.347, 95% CI 1.095 to 5.031, p=0.012 for PFS; HR 2.592, 95% CI 1.050 to 6.394, p=0.019 for OS). CONCLUSION: The promising machine learning radiomics model was developed and validated to predict the efficacy of LPI therapy for patients with HCC and perform risk stratification, with comparable performance to clinical-radiomics model.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Aprendizado de Máquina , Compostos de Fenilureia , Quinolinas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Quinolinas/uso terapêutico , Compostos de Fenilureia/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Tomografia Computadorizada por Raios X/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Radiômica
2.
Apoptosis ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824477

RESUMO

The upregulation of programmed death ligand 1 (PD-L1) plays a crucial role in facilitating cancer cells to evade immune surveillance through immunosuppression. However, the precise regulatory mechanisms of PD-L1 in hepatocellular carcinoma (HCC) remain undefined. The correlation between PD-L1 and ubiquitin-like molecules (UBLs) was studied using sequencing data from 20 HCC patients in our center, combined with TCGA data. Specifically, the association between FAT10 and PD-L1 was further validated at both the protein and mRNA levels in HCC tissues from our center. Subsequently, the effect of FAT10 on tumor progression and immune suppression was examined through both in vivo and in vitro experiments. Utilizing sequencing data, qPCR, and Western blotting assays, we confirmed that FAT10 was highly expressed in HCC tissues and positively correlated with PD-L1 expression. Additionally, in vitro experiments demonstrated that the overexpression of FAT10 fostered the proliferation, migration, and invasion of HCC cells. Furthermore, the overexpression of FAT10 in HCC cells led to an increase in PD-L1 expression, resulting in the inhibition of T cell proliferation and the enhancement of HCC cell resistance to T cell-mediated cytotoxicity. Moreover, in vivo experiments utilizing the C57BL/6 mouse model revealed that overexpression of FAT10 effectively suppressed the infiltration of CD8 + GZMB + and CD8 + Ki67 + T cells, as well as reduced serum levels of TNF-α and IFN-γ. Mechanistically, we further identified that FAT10 upregulates PD-L1 expression via activating the PI3K/AKT/mTOR pathway, but not in a ubiquitin-like modification. In conclusion, our findings indicate that FAT10 promotes immune evasion of HCC via upregulating PD-L1 expression, suggesting its potential as a novel target to enhance the efficiency of immunotherapy in HCC.

3.
Cell Death Dis ; 15(3): 191, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443362

RESUMO

Circular RNAs (circRNAs) have been implicated in tumorigenesis and progression of various cancers. However, the underlying mechanisms of circRNAs in hepatocellular carcinoma (HCC) have not been fully elucidated. Herein, a new oncogenic circRNA, hsa_circ_0070039 (circNUP54), was identified to be significantly upregulated in HCC through circRNA sequencing. As verified in 68 HCC samples, circNUP54 overexpression was correlated with aggressive cancerous behaviors and poor outcomes. Moreover, the function experiments showed that knockdown of circNUP54 inhibited the malignant progression of HCC in vitro and in vivo, whereas overexpression of circNUP54 had the opposite role. Mechanistic investigations carried out by RNA pull-down, RNA immunoprecipitation, and immunofluorescence revealed that circNUP54 interacted with the RNA-binding protein Hu-antigen R (HuR) and promoted its cytoplasmic export. The cytoplasmic accumulation of HuR stabilized the downstream BIRC3 mRNA through its binding to the 3' UTR region. Consequently, the encoded protein of BIRC3, cellular inhibitor of apoptosis 2 (cIAP2), proceeded to activate the NF-κB signal pathway and ultimately contributed to HCC progression. In addition, depletion of BIRC3 rescued the pro-tumorigenic effect of circNUP54 on HCC cells. Overall, this study demonstrated that circNUP54 facilitates HCC progression via regulating the HuR/BIRC3/NF-κB axis, which may serve as a promising therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Regiões 3' não Traduzidas/genética , Proteína 3 com Repetições IAP de Baculovírus , Carcinogênese , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , NF-kappa B/genética , RNA Circular/genética , RNA Mensageiro/genética
4.
BMC Cancer ; 24(1): 137, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279090

RESUMO

BACKGROUND: Forkhead-box protein P1 (FOXP1) has been proposed to have both oncogenic and tumor-suppressive properties, depending on tumor heterogeneity. However, the role of FOXP1 in intrahepatic cholangiocarcinoma (ICC) has not been previously reported. METHODS: Immunohistochemistry was performed to detect FOXP1 expression in ICC and normal liver tissues. The relationship between FOXP1 levels and the clinicopathological characteristics of patients with ICC was evaluated. Finally, in vitro and in vivo experiments were conducted to examine the regulatory role of FOXP1 in ICC cells. RESULTS: FOXP1 was significantly downregulated in the ICC compared to their peritumoral tissues (p < 0.01). The positive rates of FOXP1 were significantly lower in patients with poor differentiation, lymph node metastasis, invasion into surrounding organs, and advanced stages (p < 0.05). Notably, patients with FOXP1 positivity had better outcomes (overall survival) than those with FOXP1 negativity (p < 0.05), as revealed by Kaplan-Meier survival analysis. Moreover, Cox multivariate analysis showed that negative FOXP1 expression, advanced TNM stages, invasion, and lymph node metastasis were independent prognostic risk factors in patients with ICC. Lastly, overexpression of FOXP1 inhibited the proliferation, migration, and invasion of ICC cells and promoted apoptosis, whereas knockdown of FOXP1 had the opposite role. CONCLUSION: Our findings suggest that FOXP1 may serve as a novel outcome predictor for ICC as well as a tumor suppressor that may contribute to cancer treatment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Prognóstico , Metástase Linfática/patologia , Proliferação de Células , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Biomarcadores/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA