Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Cancer Res ; 13(3): 1425-1442, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38617519

RESUMO

Background: Pancreatic adenocarcinoma (PAAD) is a lethal disease with a poor prognosis. Genes involved in acute pancreatitis (AP) or chronic pancreatitis (CP) might be important for PAAD development. This study sought to identify potential PAAD diagnosis markers and to establish a PAAD prognosis prediction model based on AP- and CP-related genes. Methods: The significantly differentially expressed genes in both AP or CP and PAAD were obtained by a bioinformatics analysis. A risk-score model for predicting survival was constructed based on The Cancer Genome Atlas (TCGA) data and validated using an International Cancer Genome Consortium (ICGC) cohort. Protein expression and the effects of the genes in the risk models were validated by immunohistochemistry, or Cell Counting Kit-8 (CCK-8) and transwell assays. The study sample data included six AP tissue samples and five normal pancreatic tissue samples, six CP tissue samples and six normal pancreatic tissue samples from the Gene Expression Omnibus (GEO) expression profiling microarrays GSE109227 and GSE41418 data sets, respectively, and fragments per kilobase per million mapped fragments (FPKM) data from four normal controls and 150 PAAD cases from TCGA database, and 182 cancer patient samples with complete survival prognostic data from the ICGC database. Results: In total, 508 significantly differentially expressed genes were found in both AP or CP and PAAD. Trefoil factor 2 (TFF2), tubulointerstitial nephritis antigen (TINAG), trefoil factor 1 (TFF1), aquaporin 5 (AQP5), SAM pointed domain containing ETS transcription factor (SPDEF), anterior gradient protein 2 (AGR2), apolipoprotein B messenger RNA editing enzyme catalytic subunit 1 (APOBEC1), kallikrein-related peptidase 6 (KLK6), dopa decarboxylase (DDC), mucin 13 (MUC13), claudin 18 (CLDN18), annexin A10 (ANXA10), and tetraspanin 1 (TSPAN1) were found to be present in PAAD and had the largest fold change. A risk-score model, comprising 19 genes, was constructed for prognostic prediction. A high-risk score indicated a poor prognosis. TINAG, DDC, SPDEF, and APOBEC1 proteins were increased in PAAD, while TINAG and DDC were correlated with the pathologic grade. Decreased TINAG, APOBEC1, transmembrane protein 94 (TMEM94), and kelch like family member 36 (KLHL36) expression inhibited PAAD cell proliferation, while decreased SPDEF, TMEM94, and KLHL36 expression significantly inhibited PAAD cell migration. Conclusions: The AP and CP co-related genes were significantly correlated with PAAD. TINAG, DDC, SPDEF, and APOBEC1 could serve as new PAAD predictors. The risk model developed in this study could be used to predict the prognosis of PAAD patients.

2.
Cell Rep ; 42(12): 113459, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37988266

RESUMO

Mesenchymal stem cells (MSCs) are present in almost all the tissues in the body, critical for their homeostasis and regeneration. However, the stemness of MSCs is mainly an in vitro observation, and lacking exclusive markers for endogenous MSCs makes it difficult to study the multipotency of MSCs in vivo, especially for human MSCs. To address this hurdle, we injected GFP-tagged human embryonic stem cell (hESC)-derived MSCs (EMSCs) into mouse blastocysts. EMSCs survived well and penetrated both the inner cell mass and trophectoderm, correlating to the higher anti-apoptotic capability of EMSCs than hESCs. Injected EMSCs contributed to skeletal, dermal, and extraembryonic tissues in the resultant chimera and partially rescued skeletal defects in Sox9+/- mouse fetuses. Thus, this study provides evidence for the stemness and developmental capability of human MSCs through chimerization with the mouse blastocyst, serving as a model for studying human mesenchymal and skeletal development.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Diferenciação Celular , Células-Tronco Embrionárias , Blastocisto
3.
Biomaterials ; 289: 121759, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36075143

RESUMO

We have previously demonstrated that mesenchymal stromal/stem cells (MSCs) in spheroids (MSCsp) tolerate ambient and hypoxic conditions for a prolonged time. Local administration of MSCsp, but not dissociated MSCs (MSCdiss), promotes wound healing and relieves multiple sclerosis and osteoarthritis in mice and monkeys. These findings indicate an advantage of MSCsp over MSCdiss in sustaining cell viability and efficacy following transplantation, which, however, does not appear to apply to intravenous (i.v.) injection for the principal concern that MSCsp might cause embolism in small blood vessels of the host, leading to sudden death. Here, we addressed this concern by injecting human MSCsp (∼450 µm) or MSCdiss i.v. into cynomolgus monkeys. Surprisingly, no deaths occurred until sacrifice at day 21 or 60 post injection, and no remarkable physiological changes were found in the animals following the i.v. injection. The big diameters of large blood vessels in monkeys, compared to small animals like mice, may allow sufficient time for MSCsp to dissociate into single cells so they can pass through small vessels without causing embolism. Retention of MSCsp was lower in the lungs but higher in the blood than retention of MSCdiss at 1 h post injection and both disappeared at day 21. In vitro, MSCsp tolerated fluidic shear stress with higher survival than MSCdiss. Thus, i.v. injection of MSCsp into nonhuman primates is feasible, safe, and probably associated with better survival, less lung entrapment and higher efficacy than administration of MSCdiss.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoartrite , Animais , Humanos , Injeções Intravenosas , Macaca fascicularis , Camundongos , Osteoartrite/metabolismo
4.
Materials (Basel) ; 14(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34639961

RESUMO

The objective of this study is to investigate the mechanical properties and the composite action of circular concrete-filled steel tube (CFST) columns subjected to compression-torsion load using finite element model analysis. Load-strain (T-γ) curves, normal stress, shear stress, and the composite action between the steel tubes and the interior concrete were analyzed based on the verified 3D finite element models. The results indicate that with the increase of axial force, the maximum shear stress at the core concrete increased significantly, and the maximum shear stress of the steel tubes gradually decreased. Meanwhile, the torsional bearing capacity of the column increased at first and then decreased. The torque share in the columns changed from the tube-sharing domain to the concrete-sharing domain, while the axial force of the steel tube remained unchanged. Practical design equations for the torsional capacity of axially loaded circular CFST columns were proposed based on the parametric analysis. The accuracy and validity of the proposed equations were verified against the collected experimental results.

5.
Stem Cells ; 38(10): 1229-1240, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32627865

RESUMO

The differentiation and maturation of mesenchymal stem cells (MSCs) to mesodermal and other lineages are known to be controlled by various extrinsic and intrinsic signals. The dysregulation of the MSC differentiation balance has been linked to several pathophysiological conditions, including obesity and osteoporosis. Previous research of the molecular mechanisms governing MSC differentiation has mostly focused on transcriptional regulation. However, recent findings are revealing the underrated role of alternative splicing (AS) in MSC differentiation and functions. In this review, we discuss recent progress in elucidating the regulatory roles of AS in MSC differentiation. We catalogue and highlight the key AS events that modulate MSC differentiation to major osteocytes, chondrocytes, and adipocytes, and discuss the regulatory mechanisms by which AS is regulated.


Assuntos
Processamento Alternativo/genética , Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Adipogenia/genética , Animais , Condrogênese/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética
6.
Dose Response ; 13(2): 1559325815592606, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26674066

RESUMO

Hormetic response is an adaptive mechanism for a cell or organism surviving in an unfavorable environment. It has been an intriguing subject of researches covering a broad range of biological and medical disciplines, in which the underlying significance and molecular mechanisms are under intensive investigation. In the present study, we demonstrated that topoisomerase I inhibitor camptothecin (CPT), a potent anticancer agent, induced an obvious hormetic response in rat pheochromocytoma PC12 cells. Camptothecin inhibited PC12 cell growth at relative high doses as generally acknowledged while stimulated the cell growth by as much as 39% at low doses. Moreover, low doses of CPT protected the cells from hydrogen peroxide (H2O2)-induced cell death. Phosphoinositide 3-kinase (PI3K)/Akt and nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathways were reported playing pivotal roles in protecting cells from oxidative stress. We observed that these 2 pathways were upregulated by low doses of CPT, as evidenced by increased levels of phosphorylated PI3K, phosphorylated Akt, phosphorylated mammalian target of rapamycin, Nrf2, and HO-1; and abolishment of the growth-promoting and neuroprotective effects of CPT by LY294002, a PI3K inhibitor. These results suggest that the hormetic and neuroprotective effects of CPT at low doses on PC12 cells were attributable, at least partially, to upregulated PI3K/Akt and Nrf2/HO-1 pathways.

7.
PLoS One ; 10(9): e0139298, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26421434

RESUMO

Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 µM) promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 µM) inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU), camptothecin (CPT), and paclitaxel (TAX). The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer.


Assuntos
Antineoplásicos/administração & dosagem , Berberina/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Hormese , Neoplasias/tratamento farmacológico , Animais , Berberina/metabolismo , Linhagem Celular Tumoral , Coptis chinensis , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
8.
Am J Chin Med ; 43(8): 1657-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26732119

RESUMO

Pulsatilla saponin D (SB365), a saponin isolated from rhizoma of Pulsatilla chinensis (Bunge) Regel, exhibited anticancer activities in various cancer types. In the present study, we identified that SB365 was a potent inhibitor of autophagic flux in several cancer cell lines. SB365 induced a robust accumulation of autophagosomes as evidenced by monodansylaervarine (MDC) staining and increased protein levels of LC3-II. However, SB365 caused the accumulation of p62, a substrate that should be degraded through the autophagy-lysosomal pathway. These results indicated that SB365 was an inducer of autophagosome formation, but an inhibitor of autophagic flux. Interestingly, we found that SB365 synergistically enhanced the anticancer activity of chemotherapeutic agents against cervical cancer HeLa cells. Furthermore, our study demonstrated that SB365 increased the phosphorylation of ERK and inhibited the phosphorylation of mTOR and p70S6K, suggesting that their roles in the effects of SB365 on autophagy. These results suggest that SB365 could be a promising adjuvant anticancer agent.


Assuntos
Antineoplásicos Fitogênicos , Autofagia/efeitos dos fármacos , Fitoterapia , Pulsatilla/química , Saponinas/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Saponinas/isolamento & purificação , Serina-Treonina Quinases TOR/metabolismo , Neoplasias do Colo do Útero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA