RESUMO
Enterovirus A71 (EV-A71) infection typically causes mild illnesses, such as hand-foot-and-mouth disease (HFMD), but occasionally leads to severe or fatal neurological complications in infants and young children. Currently, there is no specific antiviral treatment available for EV-A71 infection. Thus, the development of an effective anti-EV-A71 drug is required urgently. Cordycepin, a major bioactive compound found in Cordyceps fungus, has been reported to possess antiviral activity. However, its specific activity against EV-A71 is unknown. In this study, the potency and role of cordycepin treatment on EV-A71 infection were investigated. Results demonstrated that cordycepin treatment significantly reduced the viral load and viral ribonucleic acid (RNA) level in EV-A71-infected Vero cells. In addition, EV-A71-mediated cytotoxicity was significantly inhibited in the presence of cordycepin in a dose-dependent manner. The protective effect can also be extended to Caco-2 intestinal cells, as evidenced by the higher median tissue culture infectious dose (TCID50) values in the cordycepin-treated groups. Furthermore, cordycepin inhibited EV-A71 replication by acting on the adenosine pathway at the post-infection stage. Taken together, our findings reveal that cordycepin could be a potential antiviral candidate for the treatment of EV-A71 infection.
Assuntos
Desoxiadenosinas , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Chlorocebus aethiops , Lactente , Criança , Humanos , Pré-Escolar , Enterovirus Humano A/genética , Células Vero , Adenosina/farmacologia , Células CACO-2 , Replicação Viral , Infecções por Enterovirus/tratamento farmacológico , Antígenos Virais , Antivirais/farmacologiaRESUMO
XAV-939(XAV) is a chemical compound that inhibits the activity of tankyrase. However, the precise way in which XAV alters membrane ionic currents is not well understood. In this study,our goal was to examine the impact of XAV on the ionic currents in mouse MA-10 Leydig cells, specifically focusing on the magnitude, gating properties,and voltage-dependent hysteresis of erg-mediated K+currents(IK(erg)). In our whole-cell current recordings we observed that the addition of XAV inhibited the density of IK(erg) in a concentration-dependent manner with an IC50 of 3.1 µM. Furthermore we found that continued exposure to XAV, further addition of neither liraglutide nor insulin-like growth factor-1 counteracted XAV-mediated inhibition of IK(erg). Additionally the presence of XAV suppressed the mean current versus voltage relationship of IK(erg) across the entire voltage-clamp step analyzed. This compound shifted the steady-state activation curve of IK(erg) to a less negative potential by approximately 12 mV. The presence of XAV increased the time constant of deactivating IK(erg) in MA-10 cells. The voltage-dependent clockwise hysteresis of IK(erg) responding to prolonged upright isosceles-triangular ramp voltage became diminished by adding XAV; moreover subsequent addition of NS3623 effectively reversed XAV-induced decrease of hysteretic area of IK(erg). XAV also inhibited the proliferation of this cell line and the IC50 value of XAV-induced inhibition of cell proliferation was 2.8M. Overall the suppression of IK(erg) by XAV may serve as a significant ionic mechanism that contribute to the functional properties of MA-10 cells. However, it is important to note that this effect cannot be attributed solely to the inhibition of tankyrase.
Assuntos
Compostos Heterocíclicos com 3 Anéis , Neoplasias , Tanquirases , Camundongos , Masculino , Animais , Linhagem CelularRESUMO
Background: Since most patients with oral cancer do not benefit from current treatments, new therapeutic strategies or drugs must be developed to improve patient prognosis. Qing Yan Li Ge Tang (QYLGT), a Chinese herbal medicine, is known for its anticancer activity. This study aimed to investigate whether QYLGT has anticancer effects on human OEC-M1 oral cancer cells. Methods: To evaluate whether QYLGT affects viability, morphology, and colony formation ability of the OEC-M1 cells, the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, morphology study, and colony formation assay were performed, respectively. Each assay was carried out in triplicate, and the whole set of experiments was performed three times independently. To investigate whether QYLGT induces apoptotic effects in OEC-M1 cells, the enzyme-linked immunosorbent (ELISA) was carried out to quantify cytokeratin 18 fragment (an apoptosis marker). Each assay was carried out in triplicate, and the whole set of experiments was performed three times independently. The immunoblotting assay was performed to detect the protein expression after QYLGT treatment. The whole set of experiments was performed two times independently. Results: The results from the MTT and colony formation assays indicate that QYLGT inhibited the cell viability and clonogenic growth capacity of OEC-M1 cells. The morphology study shows that QYLGT increased plasma membrane blebbing in OEC-M1 clles. The results of ELISA and an immunoblotting assay show that QYLGT increased cytokeratin 18 fragment release and poly ADP-ribose polymerase cleavage (another apoptosis marker) in OEC-M1 cells. In addition, the results from immunoblotting assay show that QYLGT also activated apoptotic executor proteins, including caspase-8, caspase-9, and caspase-3, and the results of ELISA indicate that treatment with the pan-caspase inhibitor, Z-VAD-FMK, inhibited QYLGT-induced cytokeratin 18 fragment release. These results indicate that QYLGT inhibited cell viability in OEC-M1 cells and induced OEC-M1 apoptosis through caspase activation. Additionally, QYLGT-activated c-Jun N-terminal kinase, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and nuclear factor-kappa B (NF-κB), and the related inhibitors, including SP600125, PD184352, SB202190, and Bay11-7082, were used to confirm which signaling was involved in QYLGT-induced apoptosis. Moreover, only Bay11-7082, the NF-κB inhibitor, could suppress QYLGT-induced the release of cytokeratin 18 fragments from OEC-M1 cells. Conclusions: QYLGT induced apoptosis in OEC-M1 cells via the NF-κB pathway.
Assuntos
Neoplasias Bucais , NF-kappa B , Humanos , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Queratina-18/farmacologia , Apoptose , Neoplasias Bucais/tratamento farmacológico , Linhagem Celular TumoralRESUMO
BACKGROUND/AIM: Although clinical medicine has significantly progressed in treating nasopharyngeal carcinoma (NPC) in recent years, many patients still have poor prognoses due to distant metastasis. It is still relatively unclear why NPC has a highly metastatic ability. Especially whether the tumor microenvironment affects the invasion and metastasis of NPC still needs to be cleared. In this study, serum starvation was used to simulate nutrient deficiency in the tumor microenvironment to explore whether nutrient deficiency affects the malignancy of NPC cells. MATERIALS AND METHODS: Semiquantitative reverse transcription-polymerase chain reaction, ELISA, immunoblotting assay, reporter gene assay, and Matrigel invasion assay were carried out. RESULTS: Under serum starvation, NPC cells could induce the mRNA expression and protein secretion of matrix metalloproteinase 9 (MMP9). The ERK-AP1 pathway was activated under serum starvation in NPC cells, resulting in the expression of MMP9. In contrast, treatment with an MMP9 inhibitor or an MMP9 siRNA inhibited serum starvation-induced invasion. CONCLUSION: Serum starvation could up-regulate MMP9 expression in NPC cells, contributing to NPC invasion. Therefore, serum starvation may promote malignancy of NPC cells but also support MMP9 as a potential therapeutic target to prevent NPC cell invasion and metastasis.
Assuntos
Metaloproteinase 9 da Matriz , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Nasofaríngeas/patologia , Sistema de Sinalização das MAP Quinases , RNA Interferente Pequeno/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Invasividade Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Microambiente TumoralRESUMO
Leydig cell tumor is the most frequent non-germ cell tumors of testis. The biggest challenge of using radiotherapy to treat testicular cancer is in effectively killing cancer cells and maintaining reproductive function after treatment. Our recently published article showed that cordycepin could enhance radiosensitivity to induce mouse Leydig tumor cell apoptosis by inducing cell cycle arrest, caspase pathway and endoplasmic reticulum (ER) stress. In the present study, the potency and mechanism of a previous combination treatment protocol on reactive oxygen species (ROS) induction and DNA damage were further investigated. Our results reveal that 25 µM cordycepin plus 4 Gy radiation leads to ROS accumulation accompanied by a decrease in heme oxygenase (HO)-1 protein expression in MA-10 mouse Leydig tumor cells. Subsequently, pronounced DNA damage with phosphorylated H2A histone family member X (γ-H2AX) increase and activation of DNA damage-related signaling pathways including double and single stranded break-induced ataxia telangiectasia mutated (ATM)/checkpoint kinase (Chk)2 and ataxia telangiectasia mutated and Rad3 related (ATR)/Chk1 signaling axes were identified. p53-dependent pathway was then initiated ultimately leading to cell death. Preincubated with free radical scavenger, N-acetylcysteine (NAC), down-regulated γ-H2AX expression in treated cells and partially reduced cell death, indicating that ROS overproduction is involved in combination treatment-induced DNA damage. Furthermore, the combination treatment effectively inhibited tumor growth as reflected in the reduction of tumor volume, size and weight, and high expression level of γ-H2AX in tumor tissue in vivo, suggesting that the combination treatment inhibited tumor growth via causing DNA damage in MA-10 cells. In summary, these results expound that the combination treatment of cordycepin and radiation induces MA-10 mouse Leydig tumor cell death through ROS accumulation and DNA damage. This finding can serve as a reference guideline for future clinical therapy of testicular cancer and provide potential targets for anti-cancer drug design.
RESUMO
Although arsenic is an environmental toxicant, arsenic trioxide (ATO) is used to treat acute promyelocytic leukemia (APL) with anticancer effects. Studies have demonstrated oral cancer is in the top 10 cancers in Taiwan. High rate of oral cancers is linked to various behaviors, such as excessive alcohol consumption and tobacco use. Similarly, betel chewing is a strong risk factor in oral cancer. In the present study, oral squamous carcinoma OC3 cells were investigated with the treatments of sodium arsenite (NaAsO2) and dimethylarsenic acid (DMA), respectively, to examine if arsenic compounds have anticancer efforts. It was found that 1 µM NaAsO2 and 1 mM DMA for 24 h induced rounded contours with membrane blebbing phenomena in OC3 cells, revealing cell apoptotic characteristics. In addition, NaAsO2 (10100 µM) and DMA (1100 mM) significantly decreased OC3 cell survival. In cell cycle regulation detected by flow cytometry, NaAsO2 and DMA significantly augmented percentage of subG1 and G2/M phases in OC3 cells, respectively. Annexin V/PI double staining assay was further used to confirm NaAsO2 and DMA did induce OC3 cell apoptosis. In mechanism investigation, western blotting assay was applied and the results showed that NaAsO2 and DMA significantly induced phosphorylation of JNK, ERK1/2 and p38 and then the cleavages of caspase8, 9, 3 and poly ADPribose polymerase (PARP) in OC3 cells, dynamically. In conclusion, NaAsO2 and DMA activated MAPK pathways and then apoptotic pathways to induce OC3 oral cancer cell apoptosis.
Assuntos
Arsenicais , Neoplasias Bucais , Humanos , Ácido Cacodílico/farmacologia , Linhagem Celular Tumoral , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Apoptose , Arsenicais/farmacologiaRESUMO
Testes control the development of male reproductive system. The testicular interstitial Leydig cells (Leydig cells) synthesize testosterone for promoting spermatogenesis and secondary sexual characteristics. Type A platelet-derived growth factor (PDGF-AA) is one of the most important growth factors in regulating Leydig cell growth and function. Knockout of PDGF-AA or its congenital receptor PDGFR-α leads to poor testicular development caused by reducing Leydig cell numbers, supporting PDGF-AA/PDGFR-α signaling regulates Leydig cell development. Primary cilium is a cellular antenna that functions as an integrative platform to transduce extracellular signaling for proper development and differentiation. Several receptors including PDGFR-α are observed on primary cilia for initiating signaling cascades in distinct cell types. Here we showed that PDGF-AA/PDGFR-α signaling promoted Leydig cells growth, migration, and invasion via primary cilia. Upon PDGF-AA treatment, AKT and ERK signaling were activated to regulate these cellular events. Interestingly, active AKT and ERK were detected around the base of primary cilia. Depletion of ciliary genes (IFT88 and CEP164) alleviated PDGF-AA-activated AKT and ERK, thus reducing Leydig cell growth, migration, and invasion. Thus, our study not only reveals the function of PDGF-AA/PDGFR-α signaling in maintaining testicular physiology but also uncovers the role of primary cilium and downstream signaling in regulating Leydig cell development.
Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Células Intersticiais do Testículo , Fator de Crescimento Derivado de Plaquetas , Proteínas Proto-Oncogênicas c-akt , Humanos , Masculino , Cílios/metabolismo , Células Intersticiais do Testículo/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismoRESUMO
Arsenic compounds have been applied treating acute promyelocytic 1eukemia and solid tumors with brief mechanism investigations. In fact, we have demonstrated that sodium arsenite plus dimethylarsenic acid could activate apoptosis in MA-10 mouse Leydig tumor cells by inducing caspase pathways. However, detail underlying mechanisms how caspase cascade is regulated remains elusive. Therefore, the apoptotic mechanism of sodium arsenite plus dimethylarsenic acid were examined in MA-10 cells in this study. Our results reveal that Fas/FasL protein expressions were stimulated by sodium arsenite plus dimethylarsenic acid in MA-10 cells. In addition, reactive oxygen species (ROS) generation, cytochrome C release, Bid truncation, and Bax translocation were induced in MA-10 cells by arsenic compounds. Moreover, activation of p38, JNK and ERK1/2, MAPK pathways was stimulated while Akt phosphorylated levels and Akt expression were decreased by sodium arsenite plus dimethylarsenic in MA-10 cells. In conclusion, sodium arsenite and dimethylarsenic acid did activate MAPK pathway plus ROS generation, but suppress Akt pathway, to modulate caspase pathway and then induce MA-10 cell apoptosis.
Assuntos
Arsenitos , Neoplasias , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Arsenitos/farmacologia , CaspasesRESUMO
Clerodane diterpene, a class of bicyclic diterpenoids, is found in hundreds of plant species. 16-hydroxycleroda-3,13-dien-15,16-olide (CD) can be isolated from the plant Polyalthia longifolia and has been applied against oral cancer and glioma by xenograft model. In this study, we aim to explore its antitumour action by examining its histone deacetylase (HDAC) activity and integrin-associated intracellular signalling pathway on T24 human bladder cancer (BC) cells. Our results revealed that CD-inhibited colony formation, HDAC activity, HDAC (1, 2 and 3) mRNA and cell spreading on fibronectin-coated surfaces in a concentration-dependent manner. Furthermore, decreased cFLIP and increased caspase-8 cleavage accompanied CD-induced cell death. At non-toxic concentrations, CD blocked the migration and invasion of T24 cells. CD hindered migration and invasion by the downregulation of fibronectin, integrin α5ß1, ß-catenin, FAK, vinculin and Rho A, as well as by reduction of phosphorylated glycogen synthase kinase 3ß (pGSK3ß), pSrc, pstat3 and pNFκB. We observed that the MMP9 gene was closely linked with prognosis of patients with bladder cancer. MMP9 protein levels and activity were largely attenuated by CD in a concentration-dependent manner. In conclusion, CD-induced caspase-8-dependent apoptosis and suppressed migration and invasion by blocking several intracellular signalling pathways, including downregulation of HDAC activity and integrin-FAK and MMP9 pathways.
Assuntos
Diterpenos Clerodânicos , Neoplasias da Bexiga Urinária , Humanos , Proteína-Tirosina Quinases de Adesão Focal , Anoikis , Metaloproteinase 9 da Matriz/genética , Integrinas , Neoplasias da Bexiga Urinária/tratamento farmacológico , Histona Desacetilases/genética , Caspase 8/genética , FibronectinasRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers because of its late diagnosis and chemoresistance. Primary cilia, the cellular antennae, are observed in most human cells to maintain development and differentiation. Primary cilia are gradually lost during the progression of pancreatic cancer and are eventually absent in PDAC. Here, we showed that cisplatin-resistant PDAC regrew primary cilia. Additionally, genetic or pharmacological disruption of primary cilia sensitized PDAC to cisplatin treatment. Mechanistically, ataxia telangiectasia mutated (ATM) and ATM and RAD3-related (ATR), tumor suppressors that initiate DNA damage responses, promoted the excessive formation of centriolar satellites (EFoCS) and autophagy activation. Disruption of EFoCS and autophagy inhibited primary ciliogenesis, sensitizing PDAC cells to cisplatin treatment. Collectively, our findings revealed an unexpected interplay among the DNA damage response, primary cilia, and chemoresistance in PDAC and deciphered the molecular mechanism by which ATM/ATR-mediated EFoCS and autophagy cooperatively regulate primary ciliogenesis.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Carcinoma Ductal Pancreático , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Dano ao DNA , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Cílios , Neoplasias PancreáticasRESUMO
Radiotherapy is a localized treatment commonly used in various types of cancer. However, major limitation of radiotherapy is the development of resistance of tumor cells to radiosensitivity. Cordycepin, a predominant functional component of the Cordyceps sinensis, is considered to use in treating tumor cells. In the present study, we investigated the anticancer effect of the combination of radiation and cordycepin in the treatment of Leydig tumor cells. Results showed that the combination treatment has a synergistic effect significantly suppress cell viability and enhance the radiosensitivity in MA-10 mouse Leydig tumor cells. The combination treatment induced MA-10 cell apoptosis through increasing levels of cleaved caspase-3/-8/-9, poly ADP-ribose polymerase (PARP), and cytochrome c and decreasing levels of B-cell lymphoma 2 (Bcl-2). In addition, prolonged sub-G1 and G2/M arrest accompany with cell cycle-related protein regulation was observed in cells that received the combination treatment. The endoplasmic reticulum (ER) stress-related protein expressions were regulated after MA-10 cells treating with a combination of 100 µM cordycepin and 4 Gy radiation. Furthermore, the combination treatment also decreased the Leydig tumor mass by increasing cell apoptosis in tumor-bearing mice. In conclusion, cordycepin enhances radiosensitivity to induce mouse Leydig tumor cells toward apoptosis in vitro and in vivo. This study will provide a scientific basis for the development of therapeutic regimen of testicular cancer.
RESUMO
For a number of years, oral cancer has remained in the top ten most common types of cancer, with an incidence rate that is steadily increasing. In total, ~75% oral cancer cases are associated with lifestyle factors, including uncontrolled alcohol consumption, betel and tobacco chewing, and the excessive use of tobacco. Notably, betel chewing is highly associated with oral cancer in Southeast Asia. Arsenic is a key environmental toxicant; however, arsenic trioxide has been used as a medicine for the treatment of acute promyelocytic leukemia, highlighting its anticancer properties. The present study aimed to investigate the role of arsenic compounds in the treatment of cancer, using FaDu oral squamous carcinoma cells treated with sodium arsenite (NaAsO2) and dimethyl arsenic acid (DMA). The results demonstrated that FaDu cells exhibited membrane blebbing phenomena and high levels of apoptosis following treatment with 10 µM NaAsO2 and 1 mM DMA for 24 h. The results of cell viability assay demonstrated that the rate of FaDu cell survival was markedly reduced as the concentration of arsenic compounds increased from 10 to 100 µM NaAsO2, and 1 to 100 mM DMA. Moreover, flow cytometry was carried out to further examine the effects of arsenic compounds on FaDu cell cycle regulation; the results revealed that treatment with NaAsO2 and DMA led to a significant increase in the percentage of FaDu cells in the subG1 and G2/M phases of the cell cycle. An Annexin V/PI double staining assay was subsequently performed to verify the levels of FaDu cell apoptosis following treatment with arsenic compounds. Furthermore, the results of the western blot analyses revealed that the expression levels of caspase8, 9 and 3, and poly ADPribose polymerase, as well the levels of phosphorylated JNK and ERK1/2 were increased following treatment with NaAsO2 and DMA in the FaDu cells. On the whole, the results of the present study revealed that treatment with NaAsO2 and DMA promoted the apoptosis of FaDu oral cancer cells, by activating MAPK pathways, as well as the extrinsic and intrinsic apoptotic pathways.
Assuntos
Apoptose/efeitos dos fármacos , Arsênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Arsênio/metabolismo , Caspases/metabolismo , Caspases/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/fisiopatologiaRESUMO
Cordycepin, a bioactive compound extracted from Cordyceps sinensis, can induce apoptosis in human OEC-M1 oral cancer cells. However, the exact mechanism is still unclear. The present study aimed to investigate the underlying mechanism of cordycepin-induced apoptosis in OEC-M1 cells. Following treatment with cordycepin, apoptosis was examined and quantified using a DNA laddering assay and a cytokeratin 18 fragment enzyme-linked immunosorbent assay, respectively. Expressions of mitogen-activated protein kinases (MAPKs) and apoptosis-related proteins were detected by the western blot analysis. Our results show that a pan-caspase inhibitor, Z-VAD-FMK, could significantly inhibit cordycepin-induced apoptosis in OEC-M1 cells. In addition, treatment with cordycepin not only activated caspase-8, caspase-9, and caspase-3 but also induced Bid and poly ADP-ribose polymerase cleavages. Furthermore, cordycepin also induced the activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase, and p38 MAPKs. Among MAPKs, activation of JNK solely contributed to cordycepin-induced apoptosis with the activation of caspase-8, caspase-9, and caspase-3 and cleavage of PARP. Taken together, the present study demonstrated that cordycepin activated JNK and caspase pathways to induce apoptosis in OEC-M1 cells.
RESUMO
Fibroblast growth factor 9 (FGF9) modulates cell proliferation, differentiation and motility for development and tissue repair in normal cells. Growing evidence shows that abnormal activation of FGF9 signaling is associated with tumor malignancy. We have previously reported that FGF9 increases MA-10 mouse Leydig tumor cell proliferation, in vitro, and tumor growth, in vivo. Also, FGF9 promotes the tumor growth and liver metastasis of mouse Lewis lung cancer cells, in vivo. However, the effects of FGF9 in the early stage of tumorigenesis remains elusive. In this study, TM3 mouse Leydig progenitor cells, that are not tumorigenic in immunocompromised mice, were used as a model cell line to investigate the role of FGF9 in tumorigenesis. The results demonstrated that FGF9 significantly induced cell proliferation and activated the MAPK, PI3K and PLCγ signaling pathways in TM3 cells. The percentage of the cell number in G1 phase was reduced and that in S and G2/M phases was increased after FGF9 stimulation in TM3 cells. Cyclin D1, cyclin A1, CDK2, CDK1, and p21 expressions and the phosphorylation level of Rb were all induced in FGF9-treated TM3 cells. In addition, FGF9 increased the expression of FGF receptor 1-4 in TM3 cells, suggesting the positive feedback loop between FGF9 and FGFRs. Furthermore, in the allograft mouse model, FGF9 promoted the tumorigenesis of TM3 cells characterized by higher expression of tumor markers, such as tumor necrosis factor alpha (TNFα) and α-fetoprotein (AFP), in the subcutaneously inoculated TM3 cell tissue. Conclusively, FGF9 induced cell cycle to increase cell proliferation of TM3 cells through FAK, MAPK, PI3K/Akt and PLCγ signaling pathways, in vitro, and promoted the tumorigenesis of TM3 cell allograft tissue, in vivo, which is a potential marker for tumor as well as a target for cancer therapeutic strategies.
RESUMO
Despite improvements in cancer treatments resulting in higher survival rates, the proliferation and metastasis of tumors still raise new questions in cancer therapy. Therefore, new drugs and strategies are still needed. Midazolam (MDZ) is a common sedative drug acting through the γ-aminobutyric acid receptor in the central nervous system and also binds to the peripheral benzodiazepine receptor (PBR) in peripheral tissues. Previous studies have shown that MDZ inhibits cancer cell proliferation but increases cancer cell apoptosis through different mechanisms. In this study, we investigated the possible anticancer mechanisms of MDZ on different cancer cell types. MDZ inhibited transforming growth factor ß (TGF-ß)-induced cancer cell proliferation of both A549 and MCF-7 cells. MDZ also inhibited TGF-ß-induced cell migration, invasion, epithelial-mesenchymal-transition, and Smad phosphorylation in both cancer cell lines. Inhibition of PBR by PK11195 rescued the MDZ-inhibited cell proliferation, suggesting that MDZ worked through PBR to inhibit TGF-ß pathway. Furthermore, MDZ inhibited proliferation, migration, invasion and levels of mesenchymal proteins in MDA-MD-231 triple-negative breast cancer cells. Together, MDZ inhibits cancer cell proliferation both in epithelial and mesenchymal types and EMT, indicating an important role for MDZ as a candidate to treat lung and breast cancers.
RESUMO
Since a portion of patients with nasopharyngeal carcinoma (NPC) do not benefit much from current standard treatments, it is still needed to discover new therapeutic drugs to improve the prognosis of the patients. Considering that Chinese traditional medicine plays a role in inhibiting tumor progression, in this study, we aimed to investigate whether a Chinese herbal formula, Qing Yan Li Ge Tang (QYLGT), has the anticancer activity in NPC cells and explore the underlying mechanism as well. MTT assay, colony formation assay, immunoblotting assay, and DNA laddering assay were performed to assess cell viability, cell colony formation, protein expression, and DNA fragmentation, respectively. Results show that QYLGT was able to inhibit the cell viability and decrease colony formation ability in NPC cells. QYLGT could also increase the formation of intracellular vacuoles and induce the autophagy-related protein expressions, including Atg3, Atg6, and Atg12-Atg5 conjugate in NPC cells. Treatment with an autophagy inhibitor, 3-methyladenine, could significantly recover QYLGT-inhibited cell viability of NPC cells. In addition, QYLGT did not significantly induce apoptosis in NPC cells. We also found that QYLGT had the ability to activate phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway. Treatment with PI3K inhibitors, LY294002 and wortmannin, or mTOR inhibitors, rapamycin and Torin 1, could not only recover QYLGT-inhibited cell viability of NPC cells but also inhibit Atg3 expression. Taken together, our results demonstrated that QYLGT could induce autophagic cell death in NPC cells through the PI3K/Akt/mTOR pathway.
RESUMO
Polyalthia belong to the Annonaceae family and are a type of evergreen tree distributed across many tropical and subtropical regions. Polyalthia species have been used long term as indigenous medicine to treat certain diseases, including fever, diabetes, infection, digestive disease, etc. Recent studies have demonstrated that not only crude extracts but also the isolated pure compounds exhibit various pharmacological activities, such as anti-oxidant, anti-microbial, anti-tumor, anti-cancer, etc. It is known that the initiation of cancer usually takes several years and is related to unhealthy lifestyle, as well as dietary and environmental factors, such as stress, toxins and smoking. In fact, natural or synthetic substances have been used as cancer chemoprevention to delay, impede, or even stop cancer growing. This review is an attempt to collect current available phytochemicals from Polyalthia species, which exhibit anti-cancer potentials for chemoprevention purposes, providing directions for further research on the interesting agents and possible clinical applications.
Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Compostos Fitoquímicos/farmacologia , Polyalthia/química , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Humanos , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificaçãoRESUMO
Cordycepin is an adenosine derivative isolated from Cordyceps sinensis, which has been used as an herbal complementary and alternative medicine with various biological activities. The general anti-cancer mechanisms of cordycepin are regulated by the adenosine A3 receptor, epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPKs), and glycogen synthase kinase (GSK)-3ß, leading to cell cycle arrest or apoptosis. Notably, cordycepin also induces autophagy to trigger cell death, inhibits tumor metastasis, and modulates the immune system. Since the dysregulation of autophagy is associated with cancers and neuron, immune, and kidney diseases, cordycepin is considered an alternative treatment because of the involvement of cordycepin in autophagic signaling. However, the profound mechanism of autophagy induction by cordycepin has never been reviewed in detail. Therefore, in this article, we reviewed the anti-cancer and health-promoting effects of cordycepin in the neurons, kidneys, and the immune system through diverse mechanisms, including autophagy induction. We also suggest that formulation changes for cordycepin could enhance its bioactivity and bioavailability and lower its toxicity for future applications. A comprehensive understanding of the autophagy mechanism would provide novel mechanistic insight into the anti-cancer and health-promoting effects of cordycepin.
Assuntos
Antineoplásicos/farmacologia , Autofagia , Desoxiadenosinas/farmacologia , Saúde , Animais , Autofagia/efeitos dos fármacos , Humanos , Modelos Biológicos , Nanopartículas/químicaRESUMO
It has been reported that paclitaxel activates cell cycle arrest and increases caspase protein expression to induce apoptosis in head and neck squamous cell carcinoma (HNSCC) cell lines. However, the potential signaling pathway regulating this apoptotic phenomenon remains unclear. The present study used OEC-M1 cells to investigate the underlying molecular mechanism of paclitaxel-induced apoptosis. Following treatment with paclitaxel, cell viability was assessed via the MTT assay. Necrosis, apoptosis, cell cycle and mitochondrial membrane potential (∆Ψm) were analyzed via flow cytometric analyses, respectively. Western blot analysis was performed to detect the expression levels of proteins associated with the MAPK and caspase signaling pathways. The results demonstrated that low-dose paclitaxel (50 nM) induced apoptosis but not necrosis in HNSCC cells. In addition, paclitaxel activated the c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38 mitogen-activated protein kinase. The paclitaxel-activated JNK contributed to paclitaxel-induced apoptosis, activation of caspase-3, -6, -7, -8 and -9, and reduction of ∆Ψm. In addition, caspase-8 and -9 inhibitors, respectively, significantly decreased paclitaxel-induced apoptosis. Notably, Bid was truncated following treatment with paclitaxel. Taken together, the results of the present study suggest that paclitaxel-activated JNK is required for caspase activation and loss of ∆Ψm, which results in apoptosis of HNSCC cells. These results may provide mechanistic basis for designing more effective paclitaxel-combining regimens to treat HNSCC.
RESUMO
Fibroblast growth factors 9 (FGF9) modulates cell proliferation, differentiation and motility for development and repair in normal cells. Abnormal activation of FGF9 signaling is associated with tumor progression in many cancers. Also, FGF9 may be an unfavorable prognostic indicator for non-small cell lung cancer patients. However, the effects and mechanisms of FGF9 in lung cancer remain elusive. In this study, we investigated the FGF9-induced effects and signal activation profiles in mouse Lewis lung carcinoma (LLC) in vitro and in vivo. Our results demonstrated that FGF9 significantly induced cell proliferation and epithelial-to-mesenchymal transition (EMT) phenomena (migration and invasion) in LLC cells. Mechanism-wise, FGF9 interacted with FGFR1 and activated FAK, AKT, and ERK/MAPK signal pathways, induced the expression of EMT key proteins (N-cadherin, vimentin, snail, MMP2, MMP3 and MMP13), and reduced the expression of E-cadherin. Moreover, in the allograft mouse model, intratumor injection of FGF9 to LLC-tumor bearing C57BL/6 mice enhanced LLC tumor growth which were the results of increased Ki67 expression and decreased cleaved caspase-3 expression compared to control groups. Furthermore, we have a novel finding that FGF9 promoted liver metastasis of subcutaneous inoculated LLC tumor with angiogenesis, EMT and M2-macrophage infiltration in the tumor microenvironment. In conclusion, FGF9 activated FAK, AKT, and ERK signaling through FGFR1 with induction of EMT to stimulate LLC tumorigenesis and hepatic metastasis. This novel FGF9/LLC allograft animal model may therefore be useful to study the mechanism of liver metastasis which is the worst prognostic factor for lung cancer patients with distant organ metastasis.