Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 600, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937794

RESUMO

BACKGROUND: Interstitial lung disease (ILD) is the primary cause of mortality in systemic sclerosis (SSc), an autoimmune disease characterized by tissue fibrosis. SSc-related ILD (SSc-ILD) occurs more frequently in females aged 30-55 years, whereas idiopathic pulmonary fibrosis (IPF) is more prevalent in males aged 60-75 years. SSc-ILD occurs earlier than IPF and progresses rapidly. FCN1, FABP4, and SPP1 macrophages are involved in the pathogenesis of lung fibrosis; SPP1 macrophages demonstrate upregulated expression in both SSc-ILD and IPF. To identify the differences between SSc-ILD and IPF using single-cell analysis, clarify their distinct pathogeneses, and propose directions for prevention and treatment. METHODS: We performed single-cell RNA sequencing on NCBI Gene Expression Omnibus (GEO) databases GSE159354 and GSE212109, and analyzed lung tissue samples across healthy controls, IPF, and SSc-ILD. The primary measures were the filtered genes integrated with batch correction and annotated cell types for distinguishing patients with SSc-ILD from healthy controls. We proposed an SSc-ILD pathogenesis using cell-cell interaction inferences, and predicted transcription factors regulating target genes using SCENIC. Drug target prediction of the TF gene was performed using Drug Bank Online. RESULTS: A subset of macrophages activates the MAPK signaling pathway under oxidative stress. Owing to the lack of inhibitory feedback from ANNEXIN and the autoimmune characteristics, this leads to an earlier onset of lung fibrosis compared to IPF. During initial lung injury, fibroblasts begin to activate the IL6 pathway under the influence of SPP1 alveolar macrophages, but IL6 appears unrelated to other inflammatory and immune cells. This may explain why tocilizumab (an anti-IL6-receptor antibody) only preserves lung function in patients with early SSc-ILD. Finally, we identified BCLAF1 and NFE2L2 as influencers of MAPK activation in macrophages. Metformin downregulates NFE2L2 and could serve as a repurposed drug candidate. CONCLUSIONS: SPP1 alveolar macrophages play a role in the profibrotic activity of IPF and SSc-ILD. However, SSc-ILD is influenced by autoimmunity and oxidative stress, leading to the continuous activation of MAPK in macrophages. This may result in an earlier onset of lung fibrosis than in IPF. Such differences could serve as potential research directions for early prevention and treatment.


Assuntos
Doenças Pulmonares Intersticiais , Macrófagos , Escleroderma Sistêmico , Humanos , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/genética , Macrófagos/metabolismo , Doenças Pulmonares Intersticiais/complicações , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Fibrose Pulmonar Idiopática/complicações , Fibrose Pulmonar Idiopática/patologia , Idoso , Regulação da Expressão Gênica , Análise de Célula Única , Pulmão/patologia
2.
Commun Biol ; 6(1): 642, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322056

RESUMO

ABSTARCT: Ectopic ATP synthase on the plasma membrane (eATP synthase) has been found in various cancer types and is a potential target for cancer therapy. However, whether it provides a functional role in tumor progression remains unclear. Here, quantitative proteomics reveals that cancer cells under starvation stress express higher eATP synthase and enhance the production of extracellular vesicles (EVs), which are vital regulators within the tumor microenvironment. Further results show that eATP synthase generates extracellular ATP to stimulate EV secretion by enhancing P2X7 receptor-triggered Ca2+ influx. Surprisingly, eATP synthase is also located on the surface of tumor-secreted EVs. The EVs-surface eATP synthase increases the uptake of tumor-secreted EVs in Jurkat T-cells via association with Fyn, a plasma membrane protein found in immune cells. The eATP synthase-coated EVs uptake subsequently represses the proliferation and cytokine secretion of Jurkat T-cells. This study clarifies the role of eATP synthase on EV secretion and its influence on immune cells.


Assuntos
Vesículas Extracelulares , Neoplasias , Vesículas Extracelulares/metabolismo , Transporte Biológico , Trifosfato de Adenosina/metabolismo , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA