Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Magn Reson Imaging ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859600

RESUMO

BACKGROUND: Traditional biopsies pose risks and may not accurately reflect soft tissue sarcoma (STS) heterogeneity. MRI provides a noninvasive, comprehensive alternative. PURPOSE: To assess the diagnostic accuracy of histological grading and prognosis in STS patients when integrating clinical-imaging parameters with deep learning (DL) features from preoperative MR images. STUDY TYPE: Retrospective/prospective. POPULATION: 354 pathologically confirmed STS patients (226 low-grade, 128 high-grade) from three hospitals and the Cancer Imaging Archive (TCIA), divided into training (n = 185), external test (n = 125), and TCIA cohorts (n = 44). 12 patients (6 low-grade, 6 high-grade) were enrolled into prospective validation cohort. FIELD STRENGTH/SEQUENCE: 1.5 T and 3.0 T/Unenhanced T1-weighted and fat-suppressed-T2-weighted. ASSESSMENT: DL features were extracted from MR images using a parallel ResNet-18 model to construct DL signature. Clinical-imaging characteristics included age, gender, tumor-node-metastasis stage and MRI semantic features (depth, number, heterogeneity at T1WI/FS-T2WI, necrosis, and peritumoral edema). Logistic regression analysis identified significant risk factors for the clinical model. A DL clinical-imaging signature (DLCS) was constructed by incorporating DL signature with risk factors, evaluated for risk stratification, and assessed for progression-free survival (PFS) in retrospective cohorts, with an average follow-up of 23 ± 22 months. STATISTICAL TESTS: Logistic regression, Cox regression, Kaplan-Meier curves, log-rank test, area under the receiver operating characteristic curve (AUC),and decision curve analysis. A P-value <0.05 was considered significant. RESULTS: The AUC values for DLCS in the external test, TCIA, and prospective test cohorts (0.834, 0.838, 0.819) were superior to clinical model (0.662, 0.685, 0.694). Decision curve analysis showed that the DLCS model provided greater clinical net benefit over the DL and clinical models. Also, the DLCS model was able to risk-stratify patients and assess PFS. DATA CONCLUSION: The DLCS exhibited strong capabilities in histological grading and prognosis assessment for STS patients, and may have potential to aid in the formulation of personalized treatment plans. TECHNICAL EFFICACY: Stage 2.

2.
Heliyon ; 10(9): e29875, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720718

RESUMO

Objective: To explore the application of multiparametric MRI-based radiomic nomogram for assessing HER-2 2+ status of breast cancer (BC). Methods: Patients with pathology-proven HER-2 2+ invasive BC, who underwent preoperative MRI were divided into training (72 patients, 21 HER-2-positive and 51 HER-2-negative) and validation (32 patients, 9 HER-2-positive and 23 HER-2-negative) sets by randomization. All were classified as HER-2 2+ FISH-positive (HER-2-positive) or -negative (HER-2-negative) according to IHC and FISH. The 3D VOI was drawn on MR images by two radiologists. ADC, T2WI, and DCE images were analyzed separately to extract features (n = 1906). L1 regularization, F-test, and other methods were used to reduce dimensionality. Binary radiomics prediction models using features from single or combined imaging sequences were constructed using logistic regression (LR) classifier then and validated on a validation dataset. To build a radiomics nomogram, multivariate LR analysis was conducted to identify independent indicators. An evaluation of the model's predictive efficacy was made using AUC. Results: On the basis of combined ADC, T2WI, and DCE images, ten radiomic features were extracted following feature dimensionality reduction. There was superior diagnostic efficiency of radiomic signature using all three sequences compared to either one or two sequences (AUC for training group: 0.883; AUC for validation group: 0.816). Based on multivariate LR analysis, radiomic signature and peritumoral edema were independent predictors for identifying HER-2 2 +. In both training and validation datasets, nomograms combining peritumoral edema and radiomics signature demonstrated an effective discrimination (AUCs were respectively 0.966 and 0. 884). Conclusion: The nomogram that incorporated peritumoral edema and multiparametric MRI-based radiomic signature can be used to effectively predict the HER-2 2+ status of BC.

3.
Cancer Imaging ; 24(1): 59, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720384

RESUMO

BACKGROUND: To develop a magnetic resonance imaging (MRI)-based radiomics signature for evaluating the risk of soft tissue sarcoma (STS) disease progression. METHODS: We retrospectively enrolled 335 patients with STS (training, validation, and The Cancer Imaging Archive sets, n = 168, n = 123, and n = 44, respectively) who underwent surgical resection. Regions of interest were manually delineated using two MRI sequences. Among 12 machine learning-predicted signatures, the best signature was selected, and its prediction score was inputted into Cox regression analysis to build the radiomics signature. A nomogram was created by combining the radiomics signature with a clinical model constructed using MRI and clinical features. Progression-free survival was analyzed in all patients. We assessed performance and clinical utility of the models with reference to the time-dependent receiver operating characteristic curve, area under the curve, concordance index, integrated Brier score, decision curve analysis. RESULTS: For the combined features subset, the minimum redundancy maximum relevance-least absolute shrinkage and selection operator regression algorithm + decision tree classifier had the best prediction performance. The radiomics signature based on the optimal machine learning-predicted signature, and built using Cox regression analysis, had greater prognostic capability and lower error than the nomogram and clinical model (concordance index, 0.758 and 0.812; area under the curve, 0.724 and 0.757; integrated Brier score, 0.080 and 0.143, in the validation and The Cancer Imaging Archive sets, respectively). The optimal cutoff was - 0.03 and cumulative risk rates were calculated. DATA CONCLUSION: To assess the risk of STS progression, the radiomics signature may have better prognostic power than a nomogram/clinical model.


Assuntos
Progressão da Doença , Imageamento por Ressonância Magnética , Nomogramas , Sarcoma , Humanos , Sarcoma/diagnóstico por imagem , Sarcoma/cirurgia , Sarcoma/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Aprendizado de Máquina , Prognóstico , Adulto Jovem , Neoplasias de Tecidos Moles/diagnóstico por imagem , Neoplasias de Tecidos Moles/cirurgia , Neoplasias de Tecidos Moles/patologia , Curva ROC , Radiômica
4.
Quant Imaging Med Surg ; 14(4): 2993-3005, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617165

RESUMO

Background: It is crucial to distinguish unstable from stable intracranial aneurysms (IAs) as early as possible to derive optimal clinical decision-making for further treatment or follow-up. The aim of this study was to investigate the value of a deep learning model (DLM) in identifying unstable IAs from computed tomography angiography (CTA) images and to compare its discriminatory ability with that of a conventional logistic regression model (LRM). Methods: From August 2011 to May 2021, a total of 1,049 patients with 681 unstable IAs and 556 stable IAs were retrospectively analyzed. IAs were randomly divided into training (64%), internal validation (16%), and test sets (20%). Convolutional neural network (CNN) analysis and conventional logistic regression (LR) were used to predict which IAs were unstable. The area under the curve (AUC), sensitivity, specificity and accuracy were calculated to evaluate the discriminating ability of the models. One hundred and ninety-seven patients with 229 IAs from Banan Hospital were used for external validation sets. Results: The conventional LRM showed 11 unstable risk factors, including clinical and IA characteristics. The LRM had an AUC of 0.963 [95% confidence interval (CI): 0.941-0.986], a sensitivity, specificity and accuracy on the external validation set of 0.922, 0.906, and 0.913, respectively, in predicting unstable IAs. In predicting unstable IAs, the DLM had an AUC of 0.771 (95% CI: 0.582-0.960), a sensitivity, specificity and accuracy on the external validation set of 0.694, 0.929, and 0.782, respectively. Conclusions: The CNN-based DLM applied to CTA images did not outperform the conventional LRM in predicting unstable IAs. The patient clinical and IA morphological parameters remain critical factors for ensuring IA stability. Further studies are needed to enhance the diagnostic accuracy.

6.
Acad Radiol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508934

RESUMO

RATIONALE AND OBJECTIVES: Medulloblastoma (MB) and Ependymoma (EM) in children, share similarities in age group, tumor location, and clinical presentation. Distinguishing between them through clinical diagnosis is challenging. This study aims to explore the effectiveness of using radiomics and machine learning on multiparametric magnetic resonance imaging (MRI) to differentiate between MB and EM and validate its diagnostic ability with an external set. MATERIALS AND METHODS: Axial T2 weighted image (T2WI) and contrast-enhanced T1weighted image (CE-T1WI) MRI sequences of 135 patients from two centers were collected as train/test sets. Volume of interest (VOI) was manually delineated by an experienced neuroradiologist, supervised by a senior. Feature selection analysis and the least absolute shrinkage and selection operator (LASSO) algorithm identified valuable features, and Shapley additive explanations (SHAP) evaluated their significance. Five machine-learning classifiers-extreme gradient boosting (XGBoost), Bernoulli naive Bayes (Bernoulli NB), Logistic Regression (LR), support vector machine (SVM), linear support vector machine (Linear SVC) classifiers were built based on T2WI (T2 model), CE-T1WI (T1 model), and T1 + T2WI (T1 + T2 model). A human expert diagnosis was developed and corrected by senior radiologists. External validation was performed at Sun Yat-Sen University Cancer Center. RESULTS: 31 valuable features were extracted from T2WI and CE-T1WI. XGBoost demonstrated the highest performance with an area under the curve (AUC) of 0.92 on the test set and maintained an AUC of 0.80 during external validation. For the T1 model, XGBoost achieved the highest AUC of 0.85 on the test set and the highest accuracy of 0.71 on the external validation set. In the T2 model, XGBoost achieved the highest AUC of 0.86 on the test set and the highest accuracy of 0.82 on the external validation set. The human expert diagnosis had an AUC of 0.66 on the test set and 0.69 on the external validation set. The integrated T1 + T2 model achieved an AUC of 0.92 on the test set, 0.80 on the external validation set, achieved the best performance. Overall, XGBoost consistently outperformed in different classification models. CONCLUSION: The combination of radiomics and machine learning on multiparametric MRI effectively distinguishes between MB and EM in childhood, surpassing human expert diagnosis in training and testing sets.

7.
J Xray Sci Technol ; 32(3): 583-596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306089

RESUMO

PURPOSE: The explore the added value of peri-calcification regions on contrast-enhanced mammography (CEM) in the differential diagnosis of breast lesions presenting as only calcification on routine mammogram. METHODS: Patients who underwent CEM because of suspicious calcification-only lesions were included. The test set included patients between March 2017 and March 2019, while the validation set was collected between April 2019 and October 2019. The calcifications were automatically detected and grouped by a machine learning-based computer-aided system. In addition to extracting radiomic features on both low-energy (LE) and recombined (RC) images from the calcification areas, the peri-calcification regions, which is generated by extending the annotation margin radially with gradients from 1 mm to 9 mm, were attempted. Machine learning (ML) models were built to classify calcifications into malignant and benign groups. The diagnostic matrices were also evaluated by combing ML models with subjective reading. RESULTS: Models for LE (significant features: wavelet-LLL_glcm_Imc2_MLO; wavelet-HLL_firstorder_Entropy_MLO; wavelet-LHH_glcm_DifferenceVariance_CC; wavelet-HLL_glcm_SumEntropy_MLO;wavelet-HLH_glrlm_ShortRunLowGray LevelEmphasis_MLO; original_firstorder_Entropy_MLO; original_shape_Elongation_MLO) and RC (significant features: wavelet-HLH_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_10Percentile_CC; original_firstorder_Maximum_MLO; wavelet-HHH_glcm_Autocorrelation_MLO; original_shape_Elongation_MLO; wavelet-LHL_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_RootMeanSquared_MLO) images were set up with 7 features. Areas under the curve (AUCs) of RC models are significantly better than those of LE models with compact and expanded boundary (RC v.s. LE, compact: 0.81 v.s. 0.73, p < 0.05; expanded: 0.89 v.s. 0.81, p < 0.05) and RC models with 3 mm boundary extension yielded the best performance compared to those with other sizes (AUC = 0.89). Combining with radiologists' reading, the 3mm-boundary RC model achieved a sensitivity of 0.871 and negative predictive value of 0.937 with similar accuracy of 0.843 in predicting malignancy. CONCLUSIONS: The machine learning model integrating intra- and peri-calcification regions on CEM has the potential to aid radiologists' performance in predicting malignancy of suspicious breast calcifications.


Assuntos
Neoplasias da Mama , Mama , Calcinose , Meios de Contraste , Aprendizado de Máquina , Mamografia , Humanos , Mamografia/métodos , Feminino , Calcinose/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Pessoa de Meia-Idade , Diagnóstico Diferencial , Mama/diagnóstico por imagem , Adulto , Idoso , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
8.
Insights Imaging ; 15(1): 21, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270647

RESUMO

OBJECTIVE: To establish a model for predicting lymph node metastasis in bladder cancer (BCa) patients. METHODS: We retroactively enrolled 239 patients who underwent three-phase CT and resection for BCa in two centers (training set, n = 185; external test set, n = 54). We reviewed the clinical characteristics and CT features to identify significant predictors to construct a clinical model. We extracted the hand-crafted radiomics features and deep learning features of the lesions. We used the Minimum Redundancy Maximum Relevance algorithm and the least absolute shrinkage and selection operator logistic regression algorithm to screen features. We used nine classifiers to establish the radiomics machine learning signatures. To compensate for the uneven distribution of the data, we used the synthetic minority over-sampling technique to retrain each machine-learning classifier. We constructed the combined model using the top-performing radiomics signature and clinical model, and finally presented as a nomogram. We evaluated the combined model's performance using the area under the receiver operating characteristic, accuracy, calibration curves, and decision curve analysis. We used the Kaplan-Meier survival curve to analyze the prognosis of BCa patients. RESULTS: The combined model incorporating radiomics signature and clinical model achieved an area under the receiver operating characteristic of 0.834 (95% CI: 0.659-1.000) for the external test set. The calibration curves and decision curve analysis demonstrated exceptional calibration and promising clinical use. The combined model showed good risk stratification performance for progression-free survival. CONCLUSION: The proposed CT-based combined model is effective and reliable for predicting lymph node status of BCa patients preoperatively. CRITICAL RELEVANCE STATEMENT: Bladder cancer is a type of urogenital cancer that has a high morbidity and mortality rate. Lymph node metastasis is an independent risk factor for death in bladder cancer patients. This study aimed to investigate the performance of a deep learning radiomics model for preoperatively predicting lymph node metastasis in bladder cancer patients. KEY POINTS: • Conventional imaging is not sufficiently accurate to determine lymph node status. • Deep learning radiomics model accurately predicted bladder cancer lymph node metastasis. • The proposed method showed satisfactory patient risk stratification for progression-free survival.

9.
Insights Imaging ; 15(1): 23, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270724

RESUMO

BACKGROUND: To investigate whether intratumoral and peritumoral radiomics may predict pathological responses after neoadjuvant chemotherapy against advanced gastric cancer. METHODS: Clinical, pathological, and CT data from 231 patients with advanced gastric cancer who underwent neoadjuvant chemotherapy at our hospital between July 2014 and February 2022 were retrospectively collected. Patients were randomly divided into a training group (n = 161) and a validation group (n = 70). The support vector machine classifier was used to establish radiomics models. A clinical model was established based on the selected clinical indicators. Finally, the radiomics and clinical models were combined to generate a radiomics-clinical model. ROC analyses were used to evaluate the prediction efficiency for each model. Calibration curves and decision curves were used to evaluate the optimal model. RESULTS: A total of 91 cases were recorded with good response and 140 with poor response. The radiomics model demonstrated that the AUC was higher in the combined model than in the intratumoral and peritumoral models (training group: 0.949, 0.943, and 0.846, respectively; validation group: 0.815, 0.778, and 0.701, respectively). Age, Borrmann classification, and Lauren classification were used to construct the clinical model. Among the radiomics-clinical models, the combined-clinical model showed the highest AUC (training group: 0.960; validation group: 0.843), which significantly improved prediction efficiency. CONCLUSION: The peritumoral model provided additional value in the evaluation of pathological response after neoadjuvant chemotherapy against advanced gastric cancer, and the combined-clinical model showed the highest predictive efficiency. CRITICAL RELEVANCE STATEMENT: Intratumoral and peritumoral radiomics can noninvasively predict the pathological response against advanced gastric cancer after neoadjuvant chemotherapy to guide early treatment decision and provide individual treatment for patients. KEY POINTS: 1. Radiomics can predict pathological responses after neoadjuvant chemotherapy against advanced gastric cancer. 2. Peritumoral radiomics has additional predictive value. 3. Radiomics-clinical models can guide early treatment decisions and improve patient prognosis.

10.
EClinicalMedicine ; 66: 102352, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094161

RESUMO

Background: Accurate stratification of recurrence risk for bladder cancer (BCa) is essential for precise individualized therapy. This study aimed to develop and validate a model for predicting the risk of recurrence in BCa patients postoperatively using 3-phase enhanced CT images. Methods: We retrospectively enrolled 874 BCa patients across four centers between January 2006 and December 2021. Patients from one center were used as training set, while the remaining patients went into the validation set. We trained a deep learning (DL) model based on convolutional neural networks using 3-phase enhanced CT images. The resulting prediction scores were entered into Cox regression analysis to obtain DL scores and construct a DL signature. DL scores and clinical features were then used as deep learning radioclinical signature. The predictive performance of DL signature was assessed according to concordance index and area under curve compared with deep learning radioclinical signature, clinical model and a widely accepted staging grading system. Recurrence-free survival (RFS) and overall survival (OS) were also predicted in order to further assess survival benefits. Findings: DL signature showed strong power for predicting recurrence (concordance index, 0.869; area under curve, 0.889) in validation set, outperforming other models and system. In addition, we divided RFS and OS into high and low risk groups by selecting appropriate cutoff values for DL signature, and calculated cumulative recurrence risk rates for both groups. Interpretation: Our proposed DL signature shows promising potential as clinical aid for predicting postoperative recurrence risk in BCa and for stratifying the risk of RFS and OS, which can be applied to guide personalized precision therapy. Funding: There are no sources of funding for this manuscript.

11.
Acad Radiol ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993304

RESUMO

RATIONALE AND OBJECTIVES: Tumor progression and recurrence(P/R)after surgical resection are common in meningioma patients and can indicate poor prognosis. This study aimed to investigate the values of clinicopathological information and preoperative magnetic resonance imaging (MRI) radiomics in predicting P/R and progression-free survival (PFS) in meningioma patients. METHODS AND MATERIALS: A total of 169 patients with pathologically confirmed meningioma were included in this study, 54 of whom experienced P/R. Clinicopathological information, including age, gender, Simpson grading, World Health Organization (WHO) grading, Ki-67 index, and radiotherapy history, as well as preoperative traditional radiographic findings and radiomics features for each MRI modality (T1-weighted, T2-weighted, and enhanced T1-weighted images) were initially extracted. After feature selection, the optimal performance was estimated among the models established using different feature sets. Finally, Cox survival analysis was further used to predict PFS. RESULTS: Ki-67 index, Simpson grading, WHO grading, and radiotherapy history were found to be independent predictors for P/R in the multivariate regression analysis. This clinicopathological model had an area under the curve (AUC) of 0.865 and 0.817 in the training and testing sets, respectively. The performance of the combined radiomics model reached 0.85 and 0.84, respectively. A clinicopathological-radiomics model was then established, which significantly improved the prediction of meningioma P/R (AUC = 0.93 and 0.88, respectively). Finally, the risk ratio was estimated for each selected feature, and the C-index of 0.749 was obtained. CONCLUSION: Radiomics signatures of preoperative MRI have the ability to predict meningioma at the risk of P/R. By integrating clinicopathological information, the best performance was achieved.

12.
Cancer Imaging ; 23(1): 89, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723572

RESUMO

BACKGROUND: To construct and assess a computed tomography (CT)-based deep learning radiomics nomogram (DLRN) for predicting the pathological grade of bladder cancer (BCa) preoperatively. METHODS: We retrospectively enrolled 688 patients with BCa (469 in the training cohort, 219 in the external test cohort) who underwent surgical resection. We extracted handcrafted radiomics (HCR) features and deep learning (DL) features from three-phase CT images (including corticomedullary-phase [C-phase], nephrographic-phase [N-phase] and excretory-phase [E-phase]). We constructed predictive models using 11 machine learning classifiers, and we developed a DLRN by combining the radiomic signature with clinical factors. We assessed performance and clinical utility of the models with reference to the area under the curve (AUC), calibration curve, and decision curve analysis (DCA). RESULTS: The support vector machine (SVM) classifier model based on HCR and DL combined features was the best radiomic signature, with AUC values of 0.953 and 0.943 in the training cohort and the external test cohort, respectively. The AUC values of the clinical model in the training cohort and the external test cohort were 0.752 and 0.745, respectively. DLRN performed well on both data cohorts (training cohort: AUC = 0.961; external test cohort: AUC = 0.947), and outperformed the clinical model and the optimal radiomic signature. CONCLUSION: The proposed CT-based DLRN showed good diagnostic capability in distinguishing between high and low grade BCa.


Assuntos
Aprendizado Profundo , Neoplasias da Bexiga Urinária , Humanos , Nomogramas , Estudos Retrospectivos , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Tomografia Computadorizada por Raios X
13.
BMC Oral Health ; 23(1): 548, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559074

RESUMO

BACKGROUND: The purpose of this study was to identify neurogenic tumours and pleomorphic adenomas of the parapharyngeal space based on the texture characteristics of MRI-T2WI. METHODS: MR findings and pathological reports of 25 patients with benign tumours in the parapharyngeal space were reviewed retrospectively (13 cases with pleomorphic adenomas and 12 cases with neurogenic tumours). Using PyRadiomics, the texture of the region of interest in T2WI sketched by radiologists was analysed. By using independent sample t-tests and Mann‒Whitney U tests, the selected texture features of 36 Gray Level Co-Occurrence Matrix (GLCM) and Gray Level Dependence Matrix (GLDM) were tested. A set of parameters of texture features showed statistically significant differences between the two groups, which were selected, and the diagnostic efficiency was evaluated via the operating characteristic curve of the subjects. RESULTS: The differences in the three parameters - small dependence low level emphasis (SDLGLE), low level emphasis (LGLE) and difference variance (DV) of characteristics - between the two groups were statistically significant (P < 0.05). No significant difference was found in the other indices. ROC curves were drawn for the three parameters, with AUCs of 0.833, 0.795, and 0.744, respectively. CONCLUSIONS: There is a difference in the texture characteristic parameters based on magnetic resonance T2WI images between neurogenic tumours and pleomorphic adenomas in the parapharyngeal space. For the differential diagnosis of these two kinds of tumours, texture analysis of significant importance is an objective and quantitative analytical tool.


Assuntos
Adenoma Pleomorfo , Humanos , Adenoma Pleomorfo/diagnóstico por imagem , Adenoma Pleomorfo/patologia , Estudos Retrospectivos , Espaço Parafaríngeo/patologia , Imageamento por Ressonância Magnética , Diagnóstico Diferencial
14.
Insights Imaging ; 14(1): 118, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37405591

RESUMO

PURPOSE: To develop a noninvasive radiomics-based nomogram for identification of disagreement in pathology between endoscopic biopsy and postoperative specimens in gastric cancer (GC). MATERIALS AND METHODS: This observational study recruited 181 GC patients who underwent pre-treatment computed tomography (CT) and divided them into a training set (n = 112, single-energy CT, SECT), a test set (n = 29, single-energy CT, SECT) and a validation cohort (n = 40, dual-energy CT, DECT). Radiomics signatures (RS) based on five machine learning algorithms were constructed from the venous-phase CT images. AUC and DeLong test were used to evaluate and compare the performance of the RS. We assessed the dual-energy generalization ability of the best RS. An individualized nomogram combined the best RS and clinical variables was developed, and its discrimination, calibration, and clinical usefulness were determined. RESULTS: RS obtained with support vector machine (SVM) showed promising predictive capability with AUC of 0.91 and 0.83 in the training and test sets, respectively. The AUC of the best RS in the DECT validation cohort (AUC, 0.71) was significantly lower than that of the training set (Delong test, p = 0.035). The clinical-radiomic nomogram accurately predicted pathologic disagreement in the training and test sets, fitting well in the calibration curves. Decision curve analysis confirmed the clinical usefulness of the nomogram. CONCLUSION: CT-based radiomics nomogram showed potential as a clinical aid for predicting pathologic disagreement status between biopsy samples and resected specimens in GC. When practicability and stability are considered, the SECT-based radiomics model is not recommended for DECT generalization. CRITICAL RELEVANCE STATEMENT: Radiomics can identify disagreement in pathology between endoscopic biopsy and postoperative specimen.

15.
Br J Radiol ; 96(1150): 20230187, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37393531

RESUMO

OBJECTIVE: To develop and validate predictive models based on Ki-67 index, radiomics, and Ki-67 index combined with radiomics for survival analysis of patients with clear cell renal cell carcinoma. METHODS: This study enrolled 148 patients who were pathologically diagnosed as ccRCC between March 2010 and December 2018 at our institute. All tissue sections were collected and immunohistochemical staining was performed to calculate Ki-67 index. All patients were randomly divided into the training and validation sets in a 7:3 ratio. Regions of interests (ROIs) were segmented manually. Radiomics features were selected from ROIs in unenhanced, corticomedullary, and nephrographic phases. Multivariate Cox models based on the Ki-67 index and radiomics and univariate Cox models based on the Ki-67 index or radiomics alone were built; the predictive power was evaluated by the concordance (C)-index, integrated area under the curve, and integrated Brier Score. RESULTS: Five features were selected to establish the prediction models of radiomics and combined model. The C-indexes of Ki-67 index model, radiomics model, and combined model were 0.741, 0.718, and 0.782 for disease-free survival (DFS); 0.941, 0.866, and 0.963 for overall survival, respectively. The predictive power of combined model was the best in both training and validation sets. CONCLUSION: The survival prediction performance of combined model was better than Ki-67 model or radiomics model. The combined model is a promising tool for predicting the prognosis of patients with ccRCC in the future. ADVANCES IN KNOWLEDGE: Both Ki-67 and radiomics have showed giant potential in prognosis prediction. There are few studies to investigate the predictive ability of Ki-67 combined with radiomics. This study intended to build a combined model and provide a reliable prognosis for ccRCC in clinical practice.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Intervalo Livre de Doença , Antígeno Ki-67 , Neoplasias Renais/diagnóstico por imagem , Intervalo Livre de Progressão , Estudos Retrospectivos
16.
J Shoulder Elbow Surg ; 32(12): e624-e635, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37308073

RESUMO

BACKGROUND: The best-fitting circle drawn by computed tomography (CT) reconstruction of the en face view of the glenoid bone to measure the bone defect is widely used in clinical application. However, there are still some limitations in practical application, which can prevent the achievement of accurate measurements. This study aimed to accurately and automatically segment the glenoid from CT scans based on a 2-stage deep learning model and to quantitatively measure the glenoid bone defect. MATERIALS AND METHODS: Patients who were referred to our institution between June 2018 and February 2022 were retrospectively reviewed. The dislocation group consisted of 237 patients with a history of ≥2 unilateral shoulder dislocations within 2 years. The control group consisted of 248 individuals with no history of shoulder dislocation, shoulder developmental deformity, or other disease that may lead to abnormal morphology of the glenoid. All patients underwent CT examination with a 1-mm slice thickness and a 1-mm increment, including complete imaging of the bilateral glenoid. A residual neural network (ResNet) location model and a U-Net bone segmentation model were constructed to develop an automated segmentation model for the glenoid from CT scans. The data set was randomly divided into training (201 of 248) and test (47 of 248) data sets of control-group data and training (190 of 237) and test (47 of 237) data sets of dislocation-group data. The accuracy of the stage 1 (glenoid location) model, the mean intersection-over-union value of the stage 2 (glenoid segmentation) model, and the glenoid volume error were used to assess the performance of the model. The R2 value and Lin concordance correlation coefficient were used to assess the correlation between the prediction and the gold standard. RESULTS: A total of 73,805 images were obtained after the labeling process, and each image was composed of CT images of the glenoid and its corresponding mask. The average overall accuracy of stage 1 was 99.28%; the average mean intersection-over-union value of stage 2 was 0.96. The average glenoid volume error between the predicted and true values was 9.33%. The R2 values of the predicted and true values of glenoid volume and glenoid bone loss (GBL) were 0.87 and 0.91, respectively. The Lin concordance correlation coefficient value of the predicted and true values of glenoid volume and GBL were 0.93 and 0.95, respectively. CONCLUSION: The 2-stage model in this study showed a good performance in glenoid bone segmentation from CT scans and could quantitatively measure GBL, providing a data reference for subsequent clinical treatment.


Assuntos
Aprendizado Profundo , Instabilidade Articular , Luxação do Ombro , Articulação do Ombro , Humanos , Articulação do Ombro/diagnóstico por imagem , Estudos Retrospectivos , Imageamento Tridimensional , Luxação do Ombro/diagnóstico por imagem , Tomografia Computadorizada por Raios X
17.
Int J Surg ; 109(7): 1980-1992, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132183

RESUMO

BACKGROUND: Early noninvasive screening of patients who would benefit from neoadjuvant chemotherapy (NCT) is essential for personalized treatment of locally advanced gastric cancer (LAGC). The aim of this study was to identify radio-clinical signatures from pretreatment oversampled computed tomography (CT) images to predict the response to NCT and prognosis of LAGC patients. METHODS: LAGC patients were retrospectively recruited from six hospitals from January 2008 to December 2021. An SE-ResNet50-based chemotherapy response prediction system was developed from pretreatment CT images preprocessed with an imaging oversampling method (i.e. DeepSMOTE). Then, the deep learning (DL) signature and clinic-based features were fed into the deep learning radio-clinical signature (DLCS). The predictive performance of the model was evaluated based on discrimination, calibration, and clinical usefulness. An additional model was built to predict overall survival (OS) and explore the survival benefit of the proposed DL signature and clinicopathological characteristics. RESULTS: A total of 1060 LAGC patients were recruited from six hospitals; the training cohort (TC) and internal validation cohort (IVC) patients were randomly selected from center I. An external validation cohort (EVC) of 265 patients from five other centers was also included. The DLCS exhibited excellent performance in predicting the response to NCT in the IVC [area under the curve (AUC), 0.86] and EVC (AUC, 0.82), with good calibration in all cohorts ( P >0.05). Moreover, the DLCS model outperformed the clinical model ( P <0.05). Additionally, we found that the DL signature could serve as an independent factor for prognosis [hazard ratio (HR), 0.828, P =0.004]. The concordance index (C-index), integrated area under the time-dependent ROC curve (iAUC), and integrated Brier score (IBS) for the OS model were 0.64, 1.24, and 0.71 in the test set. CONCLUSION: The authors proposed a DLCS model that combined imaging features with clinical risk factors to accurately predict tumor response and identify the risk of OS in LAGC patients prior to NCT, which can then be used to guide personalized treatment plans with the help of computerized tumor-level characterization.


Assuntos
Aprendizado Profundo , Segunda Neoplasia Primária , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/tratamento farmacológico , Estudos Retrospectivos , Terapia Neoadjuvante , Prognóstico , Tomografia Computadorizada por Raios X
18.
Front Oncol ; 13: 1167602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213311

RESUMO

Background: The differentiation status of gastric cancer is related to clinical stage, treatment and prognosis. It is expected to establish a radiomic model based on the combination of gastric cancer and spleen to predict the differentiation degree of gastric cancer. Thus, we aim to determine whether radiomic spleen features can be used to distinguish advanced gastric cancer with varying states of differentiation. Materials and methods: January 2019 to January 2021, we retrospectively analyzed 147 patients with advanced gastric cancer confirmed by pathology. The clinical data were reviewed and analyzed. Three radiomics predictive models were built from radiomics features based on gastric cancer (GC), spleen (SP) and combination of two organ position (GC+SP) images. Then, three Radscores (GC, SP and GC+SP) were obtained. A nomogram was developed to predict differentiation statue by incorporating GC+SP Radscore and clinical risk factors. The area under the curve (AUC) of operating characteristics (ROC) and calibration curves were assessed to evaluate the differential performance of radiomic models based on gastric cancer and spleen for advanced gastric cancer with different states of differentiation (poorly differentiated group and non- poorly differentiated group). Results: There were 147 patients evaluated (mean age, 60 years ± 11SD, 111 men). Univariate and multivariate logistic analysis identified three clinical features (age, cTNM stage and CT attenuation of spleen arterial phase) were independent risk factors for the degree of differentiation of GC (p =0.004,0.000,0.020, respectively). The clinical radiomics (namely, GC+SP+Clin) model showed powerful prognostic ability in the training and test cohorts with AUCs of 0.97 and 0.91, respectively. The established model has the best clinical benefit in diagnosing GC differentiation. Conclusion: By combining radiomic features (GC and spleen) with clinical risk factors, we develop a radiomic nomogram to predict differentiation status in patients with AGC, which can be used to guide treatment decisions.

19.
Chin Med J (Engl) ; 136(10): 1188-1197, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37083119

RESUMO

BACKGROUND: Pneumonia-like primary pulmonary lymphoma (PPL) was commonly misdiagnosed as infectious pneumonia, leading to delayed treatment. The purpose of this study was to establish a computed tomography (CT)-based radiomics model to differentiate pneumonia-like PPL from infectious pneumonia. METHODS: In this retrospective study, 79 patients with pneumonia-like PPL and 176 patients with infectious pneumonia from 12 medical centers were enrolled. Patients from center 1 to center 7 were assigned to the training or validation cohort, and the remaining patients from other centers were used as the external test cohort. Radiomics features were extracted from CT images. A three-step procedure was applied for radiomics feature selection and radiomics signature building, including the inter- and intra-class correlation coefficients (ICCs), a one-way analysis of variance (ANOVA), and least absolute shrinkage and selection operator (LASSO). Univariate and multivariate analyses were used to identify the significant clinicoradiological variables and construct a clinical factor model. Two radiologists reviewed the CT images for the external test set. Performance of the radiomics model, clinical factor model, and each radiologist were assessed by receiver operating characteristic, and area under the curve (AUC) was compared. RESULTS: A total of 144 patients (44 with pneumonia-like PPL and 100 infectious pneumonia) were in the training cohort, 38 patients (12 with pneumonia-like PPL and 26 infectious pneumonia) were in the validation cohort, and 73 patients (23 with pneumonia-like PPL and 50 infectious pneumonia) were in the external test cohort. Twenty-three radiomics features were selected to build the radiomics model, which yielded AUCs of 0.95 (95% confidence interval [CI]: 0.94-0.99), 0.93 (95% CI: 0.85-0.98), and 0.94 (95% CI: 0.87-0.99) in the training, validation, and external test cohort, respectively. The AUCs for the two readers and clinical factor model were 0.74 (95% CI: 0.63-0.83), 0.72 (95% CI: 0.62-0.82), and 0.73 (95% CI: 0.62-0.84) in the external test cohort, respectively. The radiomics model outperformed both the readers' interpretation and clinical factor model ( P <0.05). CONCLUSIONS: The CT-based radiomics model may provide an effective and non-invasive tool to differentiate pneumonia-like PPL from infectious pneumonia, which might provide assistance for clinicians in tailoring precise therapy.


Assuntos
Linfoma , Pneumonia , Humanos , Estudos Retrospectivos , Pneumonia/diagnóstico por imagem , Análise de Variância , Tomografia Computadorizada por Raios X , Linfoma/diagnóstico por imagem
20.
J Oncol ; 2023: 8607062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866239

RESUMO

To improve prognosis of cancer patients and determine the integrative value for analysis of disease-free survival prediction, a clinic investigation was performed involving with 146 non-small cell lung cancer (NSCLC) patients (83 men and 73 women; mean age: 60.24 years ± 8.637) with a history of surgery. Their computed tomography (CT) radiomics, clinical records, and tumor immune features were firstly obtained and analyzed in this study. Histology and immunohistochemistry were also performed to establish a multimodal nomogram through the fitting model and cross-validation. Finally, Z test and decision curve analysis (DCA) were performed to evaluate and compare the accuracy and difference of each model. In all, seven radiomics features were selected to construct the radiomics score model. The clinicopathological and immunological factors model, including T stage, N stage, microvascular invasion, smoking quantity, family history of cancer, and immunophenotyping. The C-index of the comprehensive nomogram model on the training set and test set was 0.8766 and 0.8426 respectively, which was better than that of the clinicopathological-radiomics model (Z test, P =0.041<0.05), radiomics model and clinicopathological model (Z test, P =0.013<0.05 and P =0.0097<0.05). Integrative nomogram based on computed tomography radiomics, clinical and immunophenotyping can be served as effective imaging biomarker to predict DFS of hepatocellular carcinoma after surgical resection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA