Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 862: 160762, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502987

RESUMO

To rapidly assess the toxicity of bisphenols (BPs) via the activation of G protein-coupled estrogen receptor (GPER), eight BPs action on GPER were evaluated by molecular docking and molecular dynamics (MD) simulation and then confirmed with IMR-32 cells. The target BPs significantly promoted the production of reactive oxygen species (ROS), reduced cell viability, activated the expression of apoptosis-related proteins and increased the apoptosis rate of IMR-32 cells. Intracellular Ca2+ level increased significantly after the treatments with bisphenol A (BPA), bisphenol E (BPE), bisphenol C (BPC) and bisphenol AP (BPAP), suggesting the activation of GPER. Moreover, the stable binding conformations between GPER and BPA, BPE, BPC and BPAP and their dynamic changes of GPER-BPs via MD simulation also suggest that these BPs may activate GPER. The interaction between bisphenol G/bisphenol P/bisphenol PH and GPER are weak, which is consistent with their low GPER activity in vitro. Notably, after the pretreatment of GPER antagonist, Ca2+ accumulation and ROS production induced by BPA, BPE, BPC and BPAP in IMR-32 cells were attenuated. Overall, MD simulation and in vitro results mutually verified the activation of GPER by BPs, and MD simulation can rapidly evaluate the neurocytotoxicity of BPs.


Assuntos
Compostos Benzidrílicos , Receptores de Estrogênio , Compostos Benzidrílicos/toxicidade , Estrogênios/metabolismo , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Estrogênio/metabolismo
2.
Biochem Pharmacol ; 200: 115042, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35439536

RESUMO

Bisphenol A (BPA) induces neurotoxicity via enhancing cell apoptosis and inflammation potently (effective at nanomolar concentrations), but its mechanisms remain unidentified. In this study, human neuroblastoma cell lines, IMR-32 and SK-N-SH cells, isolated from a male and a female subject, respectively, were exposed to BPA at various concentrations, with epigallocatechin gallate (EGCG, an antioxidant from green tea), Z-YVAD-FMK (a caspase-1 inhibitor), and ICI182.780 [an estrogen receptor (ER) inhibitor] as modulators. The results showed that BPA increased the mRNA levels of IL-18, ASC, GSDMD and protein levels of NLRP3, caspase-1 and GSDMD in both cell lines in a nonlinear manner. Noticeably, the direction of changes in the mRNA levels of caspase-1 and IL-1ß were opposite, so did each of them in different cell lines: caspase-1 was enhanced in IMR-32 cells but suppressed in SK-N-SH cells, while IL-1ß was suppressed in IMR-32 cells but enhanced in SK-N-SH cells. The level of GSDMD in situ increased along with the leakage of IL-1ß, IL-18, caspase-1 and lactate dehydrogenase (LDH). Moreover, all the above effects of BPA were reversed by Z-YVAD-FMK, ICI182.780, and EGCG. Besides, BPA significantly increased reactive oxygen species production, LDH leakage and apoptosis, with reduced cell viability and mitochondrial membrane potential, in both cell lines, whereas Z-YVAD-FMK and ICI182.780 significantly alleviated the induction of Bak1, Bax, Bcl-2 and caspase-3 proteins by BPA. In summary, BPA may induce pyroptosis in neuroblastoma cells through NLRP3/caspase-1/GSDMD pathway, as mediated by ER; caspase-1-dependent pyroptosis may also contribute to BPA-induced apoptosis, an effect alleviated by EGCG.


Assuntos
Neuroblastoma , Piroptose , Apoptose , Compostos Benzidrílicos , Caspase 1/metabolismo , Feminino , Humanos , Inflamassomos/metabolismo , Interleucina-18 , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fenóis , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA