Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
JACS Au ; 4(4): 1550-1569, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665642

RESUMO

Dinitrosyl iron unit (DNIU), [Fe(NO)2], is a natural metallocofactor for biological storage, delivery, and metabolism of nitric oxide (NO). In the attempt to gain a biomimetic insight into the natural DNIU under biological system, in this study, synthetic dinitrosyl iron complexes (DNICs) [(NO)2Fe(µ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) and [(NO)2Fe(µ-SCH2CH2COOCH3)2Fe(NO)2] (DNIC-COOMe) were employed to investigate the structure-reactivity relationship of mechanism and kinetics for cellular uptake of DNICs, intracellular delivery of NO, and activation of cytoprotective heme oxygenase (HO)-1. After rapid cellular uptake of dinuclear DNIC-COOMe through a thiol-mediated pathway (tmax = 0.5 h), intracellular assembly of mononuclear DNIC [(NO)2Fe(SR)(SCys)]n-/[(NO)2Fe(SR)(SCys-protein)]n- occurred, followed by O2-induced release of free NO (tmax = 1-2 h) or direct transfer of NO to soluble guanylate cyclase, which triggered the downstream HO-1. In contrast, steady kinetics for cellular uptake of DNIC-COOH via endocytosis (tmax = 2-8 h) and for intracellular release of NO (tmax = 4-6 h) reflected on the elevated activation of cytoprotective HO-1 (∼50-150-fold change at t = 3-10 h) and on the improved survival of DNIC-COOH-primed mesenchymal stem cell (MSC)/human corneal endothelial cell (HCEC) under stressed conditions. Consequently, this study unravels the bridging thiolate ligands in dinuclear DNIC-COOH/DNIC-COOMe as a switch to control the mechanism, kinetics, and efficacy for cellular uptake of DNICs, intracellular delivery of NO, and activation of cytoprotective HO-1, which poses an implication on enhanced survival of postengrafted MSC for advancing the MSC-based regenerative medicine.

2.
Am J Sports Med ; 52(2): 406-422, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38193194

RESUMO

BACKGROUND: Tendons have limited regenerative potential, so healing of ruptured tendon tissue requires a prolonged period, and the prognosis is suboptimal. Although stem cell transplantation-based approaches show promise for accelerating tendon repair, the resultant therapeutic efficacy remains unsatisfactory. HYPOTHESIS: The transplantation of stem cells preassembled as 3-dimensional spheroids achieves a superior therapeutic outcome compared with the transplantation of single-cell suspensions. STUDY DESIGN: Controlled laboratory study. METHODS: Adipose-derived stem cells (ADSCs) were assembled as spheroids using a methylcellulose hydrogel system. The secretome of ADSC suspensions or spheroids was collected and utilized to treat tenocytes and macrophages to evaluate their therapeutic potential and investigate the mechanisms underlying their effects. RNA sequencing was performed to investigate the global difference in gene expression between ADSC suspensions and spheroids in an in vitro inflammatory microenvironment. For the in vivo experiment, rabbits that underwent Achilles tendon transection, followed by stump suturing, were randomly assigned to 1 of 3 groups: intratendinous injection of saline, rabbit ADSCs as conventional single-cell suspensions, or preassembled ADSC spheroids. The tendons were harvested for biomechanical testing and histological analysis at 4 weeks postoperatively. RESULTS: Our in vitro results demonstrated that the secretome of ADSCs assembled as spheroids exhibited enhanced modulatory activity in (1) tenocyte proliferation (P = .015) and migration (P = .001) by activating extracellular signal-regulated kinase (ERK) signaling and (2) the suppression of the secretion of interleukin-6 (P = .005) and interleukin-1α (P = .042) by M1 macrophages via the COX-2/PGE2/EP4 signaling axis. Gene expression profiling of cells exposed to an inflammatory milieu revealed significantly enriched terms that were associated with the immune response, cytokines, and tissue remodeling in preassembled ADSC spheroids. Ex vivo fluorescence imaging revealed that the engraftment efficiency of ADSCs in the form of spheroids was higher than that of ADSCs in single-cell suspensions (P = .003). Furthermore, the transplantation of ADSC spheroids showed superior therapeutic effects in promoting the healing of sutured stumps, as evidenced by improvements in the tensile strength (P = .019) and fiber alignment (P < .001) of the repaired tendons. CONCLUSION: The assembly of ADSCs as spheroids significantly advanced their potential to harness tenocytes and macrophages. As a proof of concept, this study clearly demonstrates the effectiveness of using ADSC spheroids to promote tendon regeneration. CLINICAL RELEVANCE: The present study lays a foundation for future clinical applications of stem cell spheroid-based therapy for the management of tendon injuries.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Animais , Coelhos , Tendão do Calcâneo/patologia , Tenócitos , Tecido Adiposo/patologia , Traumatismos dos Tendões/cirurgia , Macrófagos/patologia , Células-Tronco/fisiologia , Proliferação de Células
3.
Sci Rep ; 13(1): 1292, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690679

RESUMO

Human metallothionein-2A (MT2A) protein participates in metal homeostasis, detoxification, oxidative stress reduction, and immune defense. It decreases heavy metal ions and reactive oxygen species (ROS) during injury of cells and tissues. The single nucleotide polymorphisms at the MT2A gene have been associated in various human diseases including cancer. The current study aimed to elucidate associations between MT2A genotypes with the clinical, biochemical, and molecular characteristics that potentially related to lowered MT2A ex-pression. One hundred and forty-one healthy Taiwanese subjects were enrolled from Changhua Show-Chwan Memorial Hospital. Clinical, biochemical and molecular characteristics including the frequent minor allele SNPs, rs28366003 and rs10636, within the MT2A gene were determined. The genotype distribution of MT2A rs10636 fits the Hardy-Weinberg equilibrium. The significant associations with gradually decline of mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) were identified with MT2A rs10636 and rs28366003 using analysis of variance (ANOVA) with Tukey's analysis as a post hoc test. We further validated the correlations between the expressions of genes in erythropoiesis, cholesterol synthesis, platelet synthesis, insulin with MT2A using the web-based Gene Expression Profiling Interactive Analysis (GEPIA) databases. The results revealed that hypoxia-inducible factor 1α (HIF-1α), erythropoietin (EPO), lipoprotein lipase (LPL), and lecithin-cholesterol acyltransferase (LCAT) mRNA ex-pression are significantly correlated with MT2A mRNA expression. In conclusion, these results suggested that genetic variations of MT2A rs10636 and rs28366003 might be an important risk factor for erythropoiesis in the Taiwanese general population.


Assuntos
Índices de Eritrócitos , Eritropoese , Metalotioneína , Humanos , Alelos , Genótipo , Metalotioneína/genética , Metais Pesados/metabolismo , Polimorfismo de Nucleotídeo Único , Taiwan
4.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008908

RESUMO

The major biological methyl donor, S-adenosylmethionine (adoMet) synthesis occurs mainly in the liver. Methionine adenosyltransferase 1A (MAT1A) and glycine N-methyltransferase (GNMT) are two key enzymes involved in the functional implications of that variation. We collected 42 RNA-seq data from paired hepatocellular carcinoma (HCC) and its adjacent normal liver tissue from the Cancer Genome Atlas (TCGA). There was no mutation found in MAT1A or GNMT RNA in the 42 HCC patients. The 11,799 genes were annotated in the RNA-Seq data, and their expression levels were used to investigate the phenotypes of low MAT1A and low GNMT by Gene Set Enrichment Analysis (GSEA). The REACTOME_TRANSLATION gene set was enriched and visualized in a heatmap along with corresponding differences in gene expression between low MAT1A versus high MAT1A and low GNMT versus high GNMT. We identified 43 genes of the REACTOME_TRANSLATION gene set that are powerful prognosis factors in HCC. The significantly predicted genes were referred into eukaryotic translation initiation (EIF3B, EIF3K), eukaryotic translation elongation (EEF1D), and ribosomal proteins (RPs). Cell models expressing various MAT1A and GNMT proved that simultaneous restoring the expression of MAT1A and GNMT decreased cell proliferation, invasion, as well as the REACTOME_TRANSLATION gene EEF1D, consistent with a better prognosis in human HCC. We demonstrated new findings that downregulation or defect in MAT1A and GNMT genes can enrich the protein-associated translation process that may account for poor HCC prognosis. This is the first study demonstrated that MAT1A and GNMT, the 2 key enzymes involved in methionine cycle, could attenuate the function of ribosome translation. We propose a potential novel mechanism by which the diminished GNMT and MAT1A expression may confer poor prognosis for HCC.


Assuntos
Carcinoma Hepatocelular/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Glicina N-Metiltransferase/genética , Neoplasias Hepáticas/genética , Metionina Adenosiltransferase/genética , Metionina/metabolismo , Biossíntese de Proteínas , Sequência de Bases , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Metilação de DNA/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Glicina N-Metiltransferase/metabolismo , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/patologia , Metionina Adenosiltransferase/metabolismo , Invasividade Neoplásica , Fator 1 de Elongação de Peptídeos/metabolismo , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas/genética , Análise de Sobrevida
5.
Gut ; 71(9): 1843-1855, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34921062

RESUMO

OBJECTIVE: Stromal barriers, such as the abundant desmoplastic stroma that is characteristic of pancreatic ductal adenocarcinoma (PDAC), can block the delivery and decrease the tumour-penetrating ability of therapeutics such as tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), which can selectively induce cancer cell apoptosis. This study aimed to develop a TRAIL-based nanotherapy that not only eliminated the extracellular matrix barrier to increase TRAIL delivery into tumours but also blocked antiapoptotic mechanisms to overcome TRAIL resistance in PDAC. DESIGN: Nitric oxide (NO) plays a role in preventing tissue desmoplasia and could thus be delivered to disrupt the stromal barrier and improve TRAIL delivery in PDAC. We applied an in vitro-in vivo combinatorial phage display technique to identify novel peptide ligands to target the desmoplastic stroma in both murine and human orthotopic PDAC. We then constructed a stroma-targeted nanogel modified with phage display-identified tumour stroma-targeting peptides to co-deliver NO and TRAIL to PDAC and examined the anticancer effect in three-dimensional spheroid cultures in vitro and in orthotopic PDAC models in vivo. RESULTS: The delivery of NO to the PDAC tumour stroma resulted in reprogramming of activated pancreatic stellate cells, alleviation of tumour desmoplasia and downregulation of antiapoptotic BCL-2 protein expression, thereby facilitating tumour penetration by TRAIL and substantially enhancing the antitumour efficacy of TRAIL therapy. CONCLUSION: The co-delivery of TRAIL and NO by a stroma-targeted nanogel that remodels the fibrotic tumour microenvironment and suppresses tumour growth has the potential to be translated into a safe and promising treatment for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/patologia , Humanos , Camundongos , Nanogéis , Óxido Nítrico , Neoplasias Pancreáticas/patologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Microambiente Tumoral , Neoplasias Pancreáticas
6.
Cells ; 10(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34685727

RESUMO

Multicellular spheroids show three-dimensional (3D) organization with extensive cell-cell and cell-extracellular matrix interactions. Owing to their native tissue-mimicking characteristics, mesenchymal stem cell (MSC) spheroids are considered promising as implantable therapeutics for stem cell therapy. Herein, we aim to further enhance their therapeutic potential by tuning the cultivation parameters and thus the inherent niche of 3D MSC spheroids. Significantly increased expression of multiple pro-regenerative paracrine signaling molecules and immunomodulatory factors by MSCs was observed after optimizing the conditions for spheroid culture. Moreover, these alterations in cellular behaviors may be associated with not only the hypoxic niche developed in the spheroid core but also with the metabolic reconfiguration of MSCs. The present study provides efficient methods for manipulating the therapeutic capacity of 3D MSC spheroids, thus laying solid foundations for future development and clinical application of spheroid-based MSC therapy for regenerative medicine.


Assuntos
Imunomodulação , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Nicho de Células-Tronco , Autofagia/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Hidrogéis/farmacologia , Imunomodulação/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos
7.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576264

RESUMO

After the discovery of endogenous dinitrosyl iron complexes (DNICs) as a potential biological equivalent of nitric oxide (NO), bioinorganic engineering of [Fe(NO)2] unit has emerged to develop biomimetic DNICs [(NO)2Fe(L)2] as a chemical biology tool for controlled delivery of NO. For example, water-soluble DNIC [Fe2(µ-SCH2CH2OH)2(NO)4] (DNIC-1) was explored for oral delivery of NO to the brain and for the activation of hippocampal neurogenesis. However, the kinetics and mechanism for cellular uptake and intracellular release of NO, as well as the biocompatibility of synthetic DNICs, remain elusive. Prompted by the potential application of NO to dermato-physiological regulations, in this study, cellular uptake and intracellular delivery of DNIC [Fe2(µ-SCH2CH2COOH)2(NO)4] (DNIC-2) and its regulatory effect/biocompatibility toward epidermal cells were investigated. Upon the treatment of DNIC-2 to human fibroblast cells, cellular uptake of DNIC-2 followed by transformation into protein-bound DNICs occur to trigger the intracellular release of NO with a half-life of 1.8 ± 0.2 h. As opposed to the burst release of extracellular NO from diethylamine NONOate (DEANO), the cell-penetrating nature of DNIC-2 rationalizes its overwhelming efficacy for intracellular delivery of NO. Moreover, NO-delivery DNIC-2 can regulate cell proliferation, accelerate wound healing, and enhance the deposition of collagen in human fibroblast cells. Based on the in vitro and in vivo biocompatibility evaluation, biocompatible DNIC-2 holds the potential to be a novel active ingredient for skincare products.


Assuntos
Materiais Biocompatíveis/química , Fibroblastos/efeitos dos fármacos , Ferro/química , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Pele/efeitos dos fármacos , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Colágeno/química , Córnea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Embrião não Mamífero/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Olho/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Cinética , Melanócitos/metabolismo , Oxigênio/química , Pigmentação , Cicatrização , Peixe-Zebra/embriologia
8.
ACS Appl Mater Interfaces ; 13(32): 38090-38104, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34342219

RESUMO

Much effort has been focused on novel nanomedicine for cancer therapy. However, tumor hypoxia limits the efficacy of various cancer therapeutics. Herein, we constructed a self-sufficient hybrid enzyme-based silk fibroin hydrogel system, consisting of Pt-decorated hollow Ag-Au trimetallic nanocages (HGN@Pt) and glucose oxidase (GOx), to supply O2 continuously and consume glucose concurrently and, thereby, synergistically enhance the anti-cancer efficacy of a combined starvation and photothermal therapy operating in a hypoxic tumor microenvironment. Thanks to the cooperative effects of the active surface atoms (resulting from the island-like features of the Pt coating), the intrinsically hollow structure, and the strain effect induced by the trimetallic composition, HGN@Pt displayed efficient catalase-like activity. The enhancement in the generation of O2 through the decomposition of H2O2 mediated by the as-designed nanozyme was greater than 400% when compared with that of hollow Ag-Pt bimetallic nanospheres or tiny Pt nanoparticles. Moreover, in the presence of HGN@Pt, significant amounts of O2 could be generated within a few minutes, even in an acidic buffer solution (pH 5.8-6.5) containing a low concentration of H2O2 (100-500 µM). Because HGN@Pt exhibited a strong surface plasmon resonance peak in the near-infrared wavelength range, it could be used as a photothermal agent for hyperthermia therapy. Furthermore, GOx was released gradually from the SF hydrogel into the tumor microenvironment to mediate the depletion of glucose, leading to glucose starvation-induced cancer cell death. Finally, the O2 supplied by HGN@Pt overcame the hypoxia of the microenvironment and, thereby, promoted the starvation therapeutic effect of the GOx-mediated glucose consumption. Meanwhile, the GOx-produced H2O2 from the oxidation of glucose could be used to regenerate O2 and, thereby, construct a complementary circulatory system. Accordingly, this study presents a self-sufficient hybrid enzyme-based system that synergistically alleviates tumor hypoxia and induces an anti-cancer effect when combined with irradiation of light from a near-infrared laser.


Assuntos
Nanopartículas/uso terapêutico , Neoplasias/terapia , Terapia Fototérmica/métodos , Hipóxia Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C
9.
Bioeng Transl Med ; 6(2): e10212, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34027096

RESUMO

Podocytes are highly differentiated epithelial cells that are crucial for maintaining the glomerular filtration barrier in the kidney. Podocyte injury followed by depletion is the major cause of pathological progression of kidney diseases. Although cell therapy has been considered a promising alternative approach to kidney transplantation for the treatment of kidney injury, the resultant therapeutic efficacy in terms of improved renal function is limited, possibly owing to significant loss of engrafted cells. Herein, hybrid three-dimensional (3D) cell spheroids composed of podocytes, mesenchymal stem cells, and vascular endothelial cells were designed to mimic the glomerular microenvironment and as a cell delivery vehicle to replenish the podocyte population by cell transplantation. After creating a native glomerulus-like condition, the expression of multiple genes encoding growth factors and basement membrane factors that are strongly associated with podocyte maturation and functionality was significantly enhanced. Our in vivo results demonstrated that intrarenal transplantation of podocytes in the form of hybrid 3D cell spheroids improved engraftment efficiency and replenished glomerular podocytes. Moreover, the proteinuria of the experimental mice with hypertensive nephropathy was effectively reduced. These data clearly demonstrated the potential of hybrid 3D cell spheroids for repairing injured kidneys.

10.
Adv Healthc Mater ; 10(11): e2100024, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33890420

RESUMO

Scaffolds for tissue engineering aim to mimic the native extracellular matrix (ECM) that provides physical support and biochemical signals to modulate multiple cell behaviors. However, the majority of currently used biomaterials are oversimplified and therefore fail to provide a niche required for the stimulation of tissue regeneration. In the present study, 3D decellularized ECM (dECM) scaffolds derived from mesenchymal stem cell (MSC) spheroids and with intricate matrix composition are developed. Specifically, application of macromolecular crowding (MMC) to MSC spheroid cultures facilitate ECM assembly in a 3D configuration, resulting in the accumulation of ECM and associated bioactive components. Decellularized 3D dECM constructs produced under MMC are able to adequately preserve the microarchitecture of structural ECM components and are characterized by higher retention of growth factors. This results in a stronger proangiogenic bioactivity as compared to constructs produced under uncrowded conditions. These dECM scaffolds can be homogenously populated by endothelial cells, which direct the macroassembly of the structures into larger cell-carrying constructs. Application of empty scaffolds enhances intrinsic revascularization in vivo, indicating that the 3D dECM scaffolds represent optimal proangiogenic bioactive blocks for the construction of larger engineered tissue constructs.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual , Células Endoteliais , Matriz Extracelular , Células-Tronco , Alicerces Teciduais
11.
Biomaterials ; 272: 120765, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33780686

RESUMO

Ischemic stroke, and the consequent brain cell death, is a common cause of death and disability worldwide. Current treatments that primarily aim to relieve symptoms are relatively inefficient in achieving brain tissue regeneration and functional recovery, and thus novel therapeutic options are urgently needed. Although cell-based therapies have shown promise for treating the infarcted brain, a recurring challenge is the inadequate retention and engraftment of transplanted cells at the target tissue, thereby limiting the ultimate therapeutic efficacy. Here, we show that transplantation of preassembled three-dimensional (3D) spheroids of mesenchymal stem cells (MSCs) and vascular endothelial cells (ECs) results in significantly improved cell retention and survival compared with conventional mixed-cell suspensions. The transplanted 3D spheroids exhibit notable neuroprotective, proneurogenic, proangiogenic and anti-scarring potential as evidenced by clear extracellular matrix structure formation and paracrine factor expression and secretion; this ultimately results in increased structural and motor function recovery in the brain of an ischemic stroke mouse model. Therefore, transplantation of MSCs and ECs using the 3D cell spheroid configuration not only reduces cell loss during cell harvesting/administration but also enhances the resultant therapeutic benefit, thus providing important proof-of-concept for future clinical translation.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Transplante de Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/terapia , Células Endoteliais , Camundongos , Esferoides Celulares , Acidente Vascular Cerebral/terapia
12.
Adv Biosyst ; 4(3): e1900254, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32293147

RESUMO

Islet transplantation has been demonstrated to be a promising therapy for type 1 diabetes mellitus. Although it is a minimally invasive operating procedure and provides easy access for graft monitoring, subcutaneous transplantation of the islet only has limited therapeutic outcomes, owing to the poor capacity of skin tissue to foster revascularization in a short period. Herein, 3D cell spheroids of clinically accessible umbilical cord blood mesenchymal stem cells and human umbilical vein endothelial cells are formed and employed for codelivery with ß cells subcutaneously. The 3D stem cell spheroids, which can secrete multiple proangiogenic and prosurvival growth factors, induce robust angiogenesis and prevent ß cell graft death, as indicated by the results of in vivo bioluminescent tracking and histological analysis. These experimental data highlight the efficacy of the 3D stem cell spheroids that are fabricated using translationally applicable cell types in promoting the survival and function of subcutaneously transplanted ß cells.


Assuntos
Sobrevivência Celular/fisiologia , Células Secretoras de Insulina , Neovascularização Fisiológica/fisiologia , Esferoides Celulares , Animais , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/transplante , Humanos , Células Secretoras de Insulina/fisiologia , Células Secretoras de Insulina/transplante , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Nus , Esferoides Celulares/citologia , Esferoides Celulares/transplante
13.
Front Cell Dev Biol ; 8: 604946, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392194

RESUMO

Schwann cells (SCs) are promising candidates for cell therapy due to their ability to promote peripheral nerve regeneration. However, SC-based therapies are hindered by the lack of a clinically renewable source of SCs. In this study, using a well-defined non-genetic approach, umbilical cord blood mesenchymal stem cells (cbMSCs), a clinically applicable cell type, were phenotypically, epigenetically, and functionally converted into SC-like cells (SCLCs) that stimulated effective sprouting of neuritic processes from neuronal cells. To further enhance their therapeutic capability, the cbMSC-derived SCLCs were assembled into three-dimensional (3D) cell spheroids by using a methylcellulose hydrogel system. The cell-cell and cell-extracellular matrix interactions were well-preserved within the formed 3D SCLC spheroids, and marked increases in neurotrophic, proangiogenic and anti-apoptotic factors were detected compared with cells that were harvested using conventional trypsin-based methods, demonstrating the superior advantage of SCLCs assembled into 3D spheroids. Transplantation of 3D SCLC spheroids into crush-injured rat sciatic nerves effectively promoted the recovery of motor function and enhanced nerve structure regeneration. In summary, by simply assembling cells into a 3D-spheroid conformation, the therapeutic potential of SCLCs derived from clinically available cbMSCs for promoting nerve regeneration was enhanced significantly. Thus, these cells hold great potential for translation to clinical applications for treating peripheral nerve injury.

14.
World J Clin Cases ; 7(5): 642-649, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30863764

RESUMO

BACKGROUND: The current case report describes successful phacoemulsification with the aid of perioperative topical ascorbic acid (AA) in two patients with corneal endothelial disorders to prevent postoperative corneal endothelial decompensation. CASE SUMMARY: Two eyes of two patients underwent phacoemulsification with pre-existing corneal endothelial disorders including Fuchs corneal endothelial dystrophy (Patient 1) and endotheliitis (Patient 2). Topical AA was applied to both patients at least one month before and after with a frequency of four times per day. After the surgery, both eyes improved best-corrected visual acuity (BCVA) and there was limited human corneal endothelial cell loss without signs of corneal endothelial decompensation, such as deteriorated BCVA or persistent corneal edema during the follow-up of at least two years. CONCLUSION: Perioperative administration of topical AA may be an alternative therapy to the triple procedure in patients expecting to undergo cataract surgery.

16.
J Am Chem Soc ; 139(37): 12923-12926, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28870078

RESUMO

Hydrogen gas can reduce cytotoxic reactive oxygen species (ROS) that are produced in inflamed tissues. Inspired by natural photosynthesis, this work proposes a multicomponent nanoreactor (NR) that comprises chlorophyll a, l-ascorbic acid, and gold nanoparticles that are encapsulated in a liposomal (Lip) system that can produce H2 gas in situ upon photon absorption to mitigate inflammatory responses. Unlike a bulk system that contains free reacting molecules, this Lip NR system provides an optimal reaction environment, facilitating rapid activation of the photosynthesis of H2 gas, locally providing a high therapeutic concentration thereof. The photodriven NR system reduces the degrees of overproduction of ROS and pro-inflammatory cytokines both in vitro in RAW264.7 cells and in vivo in mice with paw inflammation that is induced by lipopolysaccharide (LPS). Histological examinations of tissue sections confirm the ability of the NR system to reduce LPS-induced inflammation. Experimental results indicate that the Lip NR system that can photosynthesize H2 gas has great potential for mitigating oxidative stress in tissue inflammation.


Assuntos
Ouro/metabolismo , Hidrogênio/metabolismo , Inflamação/metabolismo , Nanopartículas Metálicas/química , Estresse Oxidativo , Fotossíntese , Animais , Ouro/química , Hidrogênio/química , Inflamação/induzido quimicamente , Lipopolissacarídeos/metabolismo , Camundongos , Conformação Molecular , Células RAW 264.7
17.
Biomaterials ; 116: 1-9, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27912130

RESUMO

Focal infections that are caused by antibiotic-resistant bacteria are becoming an ever-growing challenge to human health. To address this challenge, a pH-responsive amphiphilic polymer of polyaniline-conjugated glycol chitosan (PANI-GCS) that can self-assemble into nanoparticles (NPs) in situ is developed. The PANI-GCS NPs undergo a unique surface charge conversion that is induced by their local pH, favoring bacterium-specific aggregation without direct contact with host cells. Following conjugation onto GCS, the optical-absorbance peak of PANI is red-shifted toward the near-infrared (NIR) region, enabling PANI-GCS NPs to generate a substantial amount of heat, which is emitted to their neighborhood. The local temperature of the NIR-irradiated PANI-GCS NPs is estimated to be approximately 5 °C higher than their ambient tissue temperature, ensuring specific and direct heating of their aggregated bacteria; hence, damage to tissue is reduced and wound healing is accelerated. The above results demonstrate that PANI-GCS NPs are practical for use in the photothermal ablation of focal infections.


Assuntos
Infecções Bacterianas/terapia , Fenômenos Fisiológicos Bacterianos/efeitos da radiação , Hipertermia Induzida/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Fototerapia/métodos , Animais , Infecções Bacterianas/patologia , Sobrevivência Celular/efeitos da radiação , Temperatura Alta , Concentração de Íons de Hidrogênio , Luz , Camundongos , Camundongos Endogâmicos BALB C , Eletricidade Estática , Resultado do Tratamento
18.
Biomaterials ; 101: 241-50, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27294541

RESUMO

Combination chemotherapy with multiple drugs commonly requires several injections on various schedules, and the probability that the drug molecules reach the diseased tissues at the proper time and effective therapeutic concentrations is very low. This work elucidates an injectable co-delivery system that is based on cationic liposomes that are adsorbed on anionic hollow microspheres (Lipos-HMs) via electrostatic interaction, from which the localized sequence-specific release of a chemopreventive agent (1,25(OH)2D3) and an anticancer drug (doxorubicin; DOX) can be thermally driven in a time-controllable manner by an externally applied high-frequency magnetic field (HFMF). Lipos-HMs can greatly promote the accumulation of reactive oxygen species (ROS) in tumor cells by reducing their cytoplasmic expression of an antioxidant enzyme (superoxide dismutase) by 1,25(OH)2D3, increasing the susceptibility of cancer cells to the cytotoxic action of DOX. In nude mice that bear xenograft tumors, treatment with Lipos-HMs under exposure to HFMF effectively inhibits tumor growth and is the most effective therapeutic intervention among all the investigated. These empirical results demonstrate that the synergistic anticancer effects of sequential release of 1,25(OH)2D3 and DOX from the Lipos-HMs may have potential for maximizing DOX cytotoxicity, supporting more effective cancer treatment.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Calcitriol/administração & dosagem , Preparações de Ação Retardada/química , Doxorrubicina/administração & dosagem , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Calcitriol/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/uso terapêutico , Feminino , Humanos , Lipossomos/química , Células MCF-7 , Campos Magnéticos , Camundongos Endogâmicos BALB C , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
19.
J Am Chem Soc ; 138(16): 5222-5, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27075956

RESUMO

In the absence of adequate oxygen, cancer cells that are grown in hypoxic solid tumors resist treatment using antitumor drugs (such as doxorubicin, DOX), owing to their attenuated intracellular production of reactive oxygen species (ROS). Hyperbaric oxygen (HBO) therapy favorably improves oxygen transport to the hypoxic tumor tissues, thereby increasing the sensitivity of tumor cells to DOX. However, the use of HBO with DOX potentiates the ROS-mediated cytotoxicity of the drug toward normal tissues. In this work, we hypothesize that regional oxygen treatment by an implanted oxygen-generating depot may enhance the cytotoxicity of DOX against malignant tissues in a highly site-specific manner, without raising systemic oxygen levels. Upon implantation close to the tumor, the oxygen-generating depot reacts with the interstitial medium to produce oxygen in situ, effectively shrinking the hypoxic regions in the tumor tissues. Increasing the local availability of oxygen causes the cytotoxicity of DOX that is accumulated in the tumors to be significantly enhanced by the elevated production of ROS, ultimately allaying the hypoxia-induced DOX resistance in solid malignancies. Importantly, this enhancement of cytotoxicity is limited to the site of the tumors, and this feature of the system that is proposed herein is unique.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Implantes de Medicamento/farmacologia , Oxigenoterapia Hiperbárica/métodos , Hipóxia Tumoral/efeitos dos fármacos , Animais , Antígenos de Neoplasias/metabolismo , Cloreto de Cálcio/química , Anidrase Carbônica IX/metabolismo , Catalase/química , Catalase/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacocinética , Implantes de Medicamento/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Camundongos Nus , Oxigênio , Peróxidos/química , Tomografia por Emissão de Pósitrons , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Biomaterials ; 74: 53-63, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26447555

RESUMO

A recurring obstacle in cell-base strategies for treating ischemic diseases is the significant loss of viable cells that is caused by the elevated levels of regional reactive oxygen species (ROS), which ultimately limits therapeutic capacity. In this study, aggregates of human umbilical vein endothelial cells (HUVECs) and cord-blood mesenchymal stem cells (cbMSCs), which are capable of inducing therapeutic angiogenesis, are prepared. We hypothesize that the concurrent delivery of an antioxidant N-acetylcysteine (NAC) may significantly increase cell retention following the transplantation of HUVEC/cbMSC aggregates in a mouse model with hindlimb ischemia. Our in vitro results demonstrate that the antioxidant NAC can restore ROS-impaired cell adhesion and recover the reduced angiogenic potential of HUVEC/cbMSC aggregates under oxidative stress. In the animal study, we found that by scavenging the ROS generated in ischemic tissues, NAC is likely to be able to establish a receptive cell environment in the early stage of cell transplantation, promoting the adhesion, retention, and survival of cells of engrafted aggregates. Therapeutic angiogenesis is therefore enhanced and blood flow recovery and limb salvage are ultimately achieved. The combinatory strategy that uses an antioxidant and HUVEC/cbMSC aggregates may provide a new means of boosting the therapeutic efficacy of cell aggregates for the treatment of ischemic diseases.


Assuntos
Antioxidantes/administração & dosagem , Adesão Celular , Sobrevivência Celular , Isquemia/terapia , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Acetilcisteína/administração & dosagem , Acetilcisteína/farmacologia , Animais , Transplante de Células , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA