Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IUBMB Life ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923653

RESUMO

To date, SARS-CoV-2 has caused millions of deaths, but the choice of treatment is limited. We previously established a platform for identifying Food and Drug Administration (FDA)-approved repurposed drugs for avian influenza A virus infections that could be used for coronavirus disease 2019 (COVID-19) treatment. In this study, we analyzed blood samples from two cohorts of 63 COVID-19 patients, including 19 patients with severe disease. Among the 39 FDA-approved drugs we identified for COVID-19 therapy in both cohorts, 23 drugs were confirmed by literature mining data, including 14 drugs already under COVID-19 clinical trials and 9 drugs reported for COVID-19 treatments, suggesting the remaining 16 FDA-approved drugs may be candidates for COVID-19 therapy. Additionally, we previously reported that herbal small RNAs (sRNAs) could be effective components in traditional Chinese medicine (TCM) for treating COVID-19. Based on the abundance of sRNAs, we screened the 245 TCMs in the Bencao (herbal) sRNA Atlas that we had previously established, and we found that the top 12 TCMs for COVID-19 treatment was consistent across both cohorts. We validated the efficiency of the top 30 sRNAs from each of the top 3 TCMs for COVID-19 treatment in poly(I:C)-stimulated human non-small cell lung cancer cells (A549 cells). In conclusion, our study recommends potential COVID-19 remedies using FDA-approved repurposed drugs and herbal sRNAs from TCMs.

2.
PLoS Pathog ; 16(3): e1008341, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32176725

RESUMO

Infection with avian influenza A H5N1 virus results in acute lung injury (ALI) and has a high mortality rate (52.79%) because there are limited therapies available for treatment. Drug repositioning is an economical approach to drug discovery. We developed a method for drug repositioning based on high-throughput RNA sequencing and identified several drugs as potential treatments for avian influenza A H5N1 virus. Using high-throughput RNA sequencing, we identified a total of 1,233 genes differentially expressed in A549 cells upon H5N1 virus infection. Among these candidate genes, 79 drug targets (corresponding to 59 approved drugs) overlapped with the DrugBank target database. Twenty-two of the 41 commercially available small-molecule drugs reduced H5N1-mediated cell death in cultured A549 cells, and fifteen drugs that protected A549 cells when administered both pre- and post-infection were tested in an H5N1-infection mouse model. The results showed significant alleviation of acute lung injury by amitriptyline HCl (an antidepressant drug), flavin adenine dinucleotide (FAD; an ophthalmic agent for vitamin B2 deficiency), azacitidine (an anti-neoplastic drug) and calcitriol (an active form of vitamin D). All four agents significantly reduced the infiltrating cell count and decreased the lung injury score in H5N1 virus-infected mice based on lung histopathology, significantly improved mouse lung edema by reducing the wet-to-dry weight ratio of lung tissue and significantly improved the survival of H5N1 virus-infected mice. This study not only identifies novel potential therapies for influenza H5N1 virus-induced lung injury but also provides a highly effective and economical screening method for repurposing drugs that may be generalizable for the prevention and therapy of other diseases.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Amitriptilina/administração & dosagem , Azacitidina/administração & dosagem , Calcitriol/administração & dosagem , Influenza Humana/complicações , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/imunologia , Animais , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Feminino , Flavina-Adenina Dinucleotídeo/administração & dosagem , Humanos , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Humana/virologia , Pulmão/imunologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
3.
Sci China Life Sci ; 63(3): 364-374, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32048163

RESUMO

The outbreak of the 2019-nCoV infection began in December 2019 in Wuhan, Hubei province, and rapidly spread to many provinces in China as well as other countries. Here we report the epidemiological, clinical, laboratory, and radiological characteristics, as well as potential biomarkers for predicting disease severity in 2019-nCoV-infected patients in Shenzhen, China. All 12 cases of the 2019-nCoV-infected patients developed pneumonia and half of them developed acute respiratory distress syndrome (ARDS). The most common laboratory abnormalities were hypoalbuminemia, lymphopenia, decreased percentage of lymphocytes (LYM) and neutrophils (NEU), elevated C-reactive protein (CRP) and lactate dehydrogenase (LDH), and decreased CD8 count. The viral load of 2019-nCoV detected from patient respiratory tracts was positively linked to lung disease severity. ALB, LYM, LYM (%), LDH, NEU (%), and CRP were highly correlated to the acute lung injury. Age, viral load, lung injury score, and blood biochemistry indexes, albumin (ALB), CRP, LDH, LYM (%), LYM, and NEU (%), may be predictors of disease severity. Moreover, the Angiotensin II level in the plasma sample from 2019-nCoV infected patients was markedly elevated and linearly associated to viral load and lung injury. Our results suggest a number of potential diagnosis biomarkers and angiotensin receptor blocker (ARB) drugs for potential repurposing treatment of 2019-nCoV infection.


Assuntos
Angiotensina II/sangue , Betacoronavirus/patogenicidade , Biomarcadores/sangue , Infecções por Coronavirus/diagnóstico , Lesão Pulmonar , Pneumonia Viral/etiologia , Síndrome do Desconforto Respiratório/etiologia , Carga Viral , Adulto , Idoso , Análise Química do Sangue , COVID-19 , Criança , Infecções por Coronavirus/complicações , Infecções por Coronavirus/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/complicações , Pneumonia Viral/diagnóstico , Pneumonia Viral/patologia , SARS-CoV-2 , Índice de Gravidade de Doença
4.
mSystems ; 4(6)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822599

RESUMO

Due to the limitations of effective treatments, avian influenza A H5N1 virus is the most lethal influenza virus strain that causes severe acute lung injury (ALI). To develop effective drugs ameliorating H5N1-induced ALI, we explore an RNA interference (RNAi) screening method to monitor changes in cell death induced by H5N1 infection. We performed RNAi screening on 19,424 genes in A549 lung epithelial cells and examined cell death induced by H5N1 infection. These screens identified 1,137 host genes for which knockdown altered cell viability by over 20%. DrugBank searches of these 1,137 host genes identified 146 validated druggable target genes with 372 drug candidates. We obtained 104 commercially available drugs with 65 validated target genes and examined their improvement of cell viability following H5N1 infection. We identified 28 drugs that could significantly recover cell viability following H5N1 infection and tested 10 in an H5N1-induced-ALI mouse model. The neurological drug ifenprodil and the anticancer drug flavopiridol markedly decreased leukocyte infiltration and lung injury scores in infected mouse lungs, significantly ameliorated edema in infected mouse lung tissues, and significantly improved the survival of H5N1-infected mice. Ifenprodil is an antagonist of the N-methyl-d-aspartate (NMDA) receptor, which is linked to inflammation and lung injury. Flavopiridol is an inhibitor of cyclin-dependent kinase 4 (CDK4), which is linked to leukocyte migration and lung injury. These results suggest that ifenprodil and flavopiridol represent novel remedies against potential H5N1 epidemics in addition to their proven indications. Furthermore, our strategy for identifying repurposable drugs could be a general approach for other diseases.IMPORTANCE Drug repurposing is a quick and economical strategy for developing new therapies with approved drugs. H5N1 is a highly pathogenic avian influenza virus subtype that can cause severe acute lung injury (ALI) and a high mortality rate due to limited treatments. The use of RNA interference (RNAi) is a reliable approach to identify essential genes in diseases. In most genomewide RNAi screenings, virus replication is the readout of interference. Since H5N1 virus infection could induce significant cell death and the percentage of cell death is associated with virus lethality, we designed a genomewide RNAi screening method to identify repurposable drugs against H5N1 virus with cell death as the readout. We discovered that the neurological drug ifenprodil and the anticancer drug flavopiridol could effectively ameliorate murine ALI after influenza A H5N1 virus infection, suggesting that they might be novel remedies for H5N1 virus-induced ALI in addition to the traditional indications.

5.
Zhonghua Nan Ke Xue ; 24(8): 690-694, 2018 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-30173426

RESUMO

OBJECTIVE: To investigate the risk factors for early castration-resistant prostate cancer (CRPC) after androgen deprivation therapy (ADT) in patients primarily diagnosed with bone-metastatic prostate cancer (BMPC). METHODS: We retrospectively analyzed the clinical data on 97 cases of primarily diagnosed BMPC treated in our hospital between January 2010 and May 2016. We included the patients without CRPC in group A and those with CRPC found within 12 months after ADT in group B. We obtained clinical data from the two groups of patients, including preoperative levels of hemoglobin, C-reactive protein and serum prostate-specific antigen (PSA), prostate volume, incidence rates of hypertension and diabetes mellitus, long-term use of aspirin or metformin, methods of biopsy and castration, Gleason scores, anti-androgen drugs, and radiotherapy with 89SrCl2, which were subjected to uni- or multivariate logistic regression analysis. RESULTS: CRPC developed in 48 (49.48%) of the 97 patients within 12 months after ADT. Univariate analysis showed the preoperative hemoglobin level, Gleason scores and biopsy by transurethral plasmakinetic resection of the prostate (TUPKRP) to be the risk factors for early CRPC, and multivariate logistic regression analysis identified two independent risk factors for it, which were the Gleason score (P = 0.010) and TUPKRP (P = 0.002). CONCLUSIONS: The incidence rate of early CRPC is high in BMPC patients within 12 months after ADT, for which the independent risk factors include biopsy by TUPKRP and Gleason scores.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Segunda Neoplasia Primária/etiologia , Neoplasias de Próstata Resistentes à Castração/etiologia , Neoplasias da Próstata/tratamento farmacológico , Biópsia , Humanos , Masculino , Gradação de Tumores , Orquiectomia , Antígeno Prostático Específico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos , Fatores de Risco , Ressecção Transuretral da Próstata/efeitos adversos
6.
Int J Mol Sci ; 17(10)2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27690016

RESUMO

Adrenocorticotrophin (ACTH)-secreting pituitary adenoma, also known as Cushing disease (CD), is rare and causes metabolic syndrome, cardiovascular disease and osteoporosis due to hypercortisolism. However, the molecular pathogenesis of CD is still unclear because of a lack of human cell lines and animal models. Here, we study 106 clinical characteristics and gene expression changes from 118 patients, the largest cohort of CD in a single-center. RNA deep sequencing is used to examine genotypic changes in nine paired female ACTH-secreting pituitary adenomas and adjacent nontumorous pituitary tissues (ANPT). We develop a novel analysis linking disease clinical characteristics and whole transcriptomic changes, using Pearson Correlation Coefficient to discover a molecular network mechanism. We report that osteoporosis is distinguished from the phenotype and genotype analysis. A cluster of genes involved in osteoporosis is identified using Pearson correlation coefficient analysis. Most of the genes are reported in the bone related literature, confirming the feasibility of phenotype-genotype association analysis, which could be used in the analysis of almost all diseases. Secreted phosphoprotein 1 (SPP1), collagen type I α 1 chain (COL1A1), 5'-nucleotidase ecto (NT5E), HtrA serine peptidase 1 (HTRA1) and angiopoietin 1 (ANGPT1) and their signalling pathways are shown to be involved in osteoporosis in CD patients. Our discoveries provide a molecular link for osteoporosis in CD patients, and may open new potential avenues for osteoporosis intervention and treatment.

7.
Int J Infect Dis ; 44: 31-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26809124

RESUMO

OBJECTIVES: The avian influenza H7N9 virus can cause cytokine overproduction and result in severe pneumonia and acute respiratory distress syndrome. Many studies have focused on hypercytokinemia during avian influenza infection. This study examined the association between C-reactive protein (CRP) and cytokines. METHODS: The plasma cytokine and chemokine profiles of 57 H7N9 patients were investigated using a multiplex immunoassay. The CRP levels of patients with H7N9 and patients with H1N1 were also compared. Further, the association between cytokines and CRP in H7N9 infections was explored. RESULTS: Compared with H1N1 virus, it was found that H7N9 virus induced higher expression of CRP, leading to cytokine storms. Several cytokines, including MIP-1ß, MCP-1, IP-10, and IL-6, were observed to have significantly positive relationships with CRP levels, whereas IL-17A was negatively associated with CRP levels. CONCLUSIONS: These findings suggest that CRP may be used as an early indicator to identify high-risk patients, to assess disease progression, and to determine the development of hypercytokinemia.


Assuntos
Proteína C-Reativa/metabolismo , Subtipo H7N9 do Vírus da Influenza A , Influenza Humana/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Quimiocinas/sangue , Citocinas/sangue , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/virologia , Interleucina-17/sangue , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
J Virol ; 89(20): 10347-58, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26246576

RESUMO

UNLABELLED: As a recycling center, lysosomes are filled with numerous acid hydrolase enzymes that break down waste materials and invading pathogens. Recently, lysosomal cell death has been defined as "lysosomal membrane permeabilization and the consequent leakage of lysosome contents into cytosol." Here, we show that the neuraminidase (NA) of H5N1 influenza A virus markedly deglycosylates and degrades lysosome-associated membrane proteins (LAMPs; the most abundant membrane proteins of lysosome), which induces lysosomal rupture, and finally leads to cell death of alveolar epithelial carcinoma A549 cells and human tracheal epithelial cells. The NA inhibitors peramivir and zanamivir could effectively block the deglycosylation of LAMPs, inhibit the virus cell entry, and prevent cell death induced by the H5N1 influenza virus. The NA of seasonal H1N1 virus, however, does not share these characteristics. Our findings not only reveal a novel role of NA in the early stage of the H5N1 influenza virus life cycle but also elucidate the molecular mechanism of lysosomal rupture crucial for influenza virus induced cell death. IMPORTANCE: The integrity of lysosomes is vital for maintaining cell homeostasis, cellular defense and clearance of invading pathogens. This study shows that the H5N1 influenza virus could induce lysosomal rupture through deglycosylating lysosome-associated membrane proteins (LAMPs) mediated by the neuraminidase activity of NA protein. NA inhibitors such as peramivir and zanamivir could inhibit the deglycosylation of LAMPs and protect lysosomes, which also further interferes with the H5N1 influenza virus infection at early stage of life cycle. This work is significant because it presents new concepts for NA's function, as well as for influenza inhibitors' mechanism of action, and could partially explain the high mortality and high viral load after H5N1 virus infection in human beings and why NA inhibitors have more potent therapeutic effects for lethal avian influenza virus infections at early stage.


Assuntos
Membrana Celular/enzimologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/enzimologia , Neuraminidase/metabolismo , Proteínas Virais/metabolismo , Ácidos Carbocíclicos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/química , Ciclopentanos/farmacologia , Citosol/efeitos dos fármacos , Citosol/enzimologia , Citosol/virologia , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Guanidinas/farmacologia , Humanos , Hidrólise , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/enzimologia , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/enzimologia , Proteínas de Membrana Lisossomal/química , Lisossomos/efeitos dos fármacos , Lisossomos/virologia , Ligação Proteica , Proteólise , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/virologia , Especificidade da Espécie , Internalização do Vírus/efeitos dos fármacos , Zanamivir/farmacologia
9.
Nat Commun ; 5: 3594, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24800825

RESUMO

The potential for avian influenza H5N1 outbreaks has increased in recent years. Thus, it is paramount to develop novel strategies to alleviate death rates. Here we show that avian influenza A H5N1-infected patients exhibit markedly increased serum levels of angiotensin II. High serum levels of angiotensin II appear to be linked to the severity and lethality of infection, at least in some patients. In experimental mouse models, infection with highly pathogenic avian influenza A H5N1 virus results in downregulation of angiotensin-converting enzyme 2 (ACE2) expression in the lung and increased serum angiotensin II levels. Genetic inactivation of ACE2 causes severe lung injury in H5N1-challenged mice, confirming a role of ACE2 in H5N1-induced lung pathologies. Administration of recombinant human ACE2 ameliorates avian influenza H5N1 virus-induced lung injury in mice. Our data link H5N1 virus-induced acute lung failure to ACE2 and provide a potential treatment strategy to address future flu pandemics.


Assuntos
Virus da Influenza A Subtipo H5N1/patogenicidade , Lesão Pulmonar/tratamento farmacológico , Infecções por Orthomyxoviridae/prevenção & controle , Peptidil Dipeptidase A/sangue , Peptidil Dipeptidase A/farmacologia , Adolescente , Adulto , Enzima de Conversão de Angiotensina 2 , Animais , Criança , Pré-Escolar , Modelos Animais de Doenças , Regulação para Baixo , Feminino , História Antiga , Humanos , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/sangue , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/virologia , Peptidil Dipeptidase A/biossíntese , Peptidil Dipeptidase A/genética , Proteínas Recombinantes/farmacologia , Adulto Jovem
10.
Pituitary ; 17(6): 505-13, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24379119

RESUMO

BACKGROUND: Adrenocorticotrophic hormone (ACTH)-dependent Cushing's syndrome, called Cushing disease, is caused by a corticotroph tumor of the pituitary gland. Insulin-like growth factor binding protein 6 (IGFBP6), which regulates insulin-like growth factor (IGF) activity and inhibits several IGF2-dependent cancer growths, plays a pivotal role in the tumorigenesis of malignancy, but its roles in ACTH-secreting pituitary adenomas remain unclear. OBJECTIVE: To investigate IGFBP6 expression in ACTH-secreting pituitary adenomas, and its involvement in tumor growth. METHODS: Sporadic ACTH-secreting pituitary adenomas specimens (n = 41) and adjacent non-tumorous pituitary tissues (n = 9) were collected by transphenoidal surgery. IGFBP6 expression was assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and validated by Western blotting. Associations of IGFBP6 expression with maximum tumor diameter or Ki-67 labeling index were evaluated in ACTH-secreting pituitary adenomas. RESULTS: IGFBP6 mRNA and protein expression were both decreased in ACTH-secreting pituitary adenomas, compared to adjacent non-tumorous pituitary tissues (P < 0.01). IGFBP6 expression was correlated inversely with maximum tumor diameter (Rho = -0.53, P < 0.0001) and Ki-67 levels (Rho = -0.52, P < 0.05). Moreover, IGFBP6 downregulation activated PI3 K-AKT-mTOR pathway in ACTH-secreting pituitary adenomas. CONCLUSIONS: IGFBP6 attenuation in ACTH-secreting pituitary adenomas is associated with tumor growth, through activation of PI3K-AKT-mTOR pathway. The finding underlies IGFBP6 roles in Cushing disease and would potentially provide a novel target of medical therapies.


Assuntos
Adenoma Hipofisário Secretor de ACT/metabolismo , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/biossíntese , Neoplasias Hipofisárias/metabolismo , Adulto , Biomarcadores Tumorais/metabolismo , Regulação para Baixo , Feminino , Humanos , Técnicas In Vitro , Antígeno Ki-67 , Masculino , Pessoa de Meia-Idade , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA