Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 736
Filtrar
1.
Angew Chem Int Ed Engl ; : e202400916, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767752

RESUMO

Prussian blue analogs (PBAs) as insertion-type cathodes have attracted significant attention in various aqueous batteries to accommodate metal or non-metal ions while suffering from serious dissolution and consequent inferior lifespan. Herein, we reveal that the dissolution of PBAs primarily originates from the locally elevated pH of electrolytes that are caused by proton co-insertion during discharge. To address this issue, a water-locking electrolyte (WLE) has been strategically implemented, which interrupts the generation and Grotthuss diffusion of protons by breaking the well-connected hydrogen bonding network in aqueous electrolytes. As a result, the WLE enables the iron hexacyanoferrate to endure over 1000 cycles at a 1C rate and supports a high-voltage decoupled cell with an average voltage of 1.95 V. These findings provide insights for mitigating dissolution problems in electrode materials, thereby enhancing the viability and performance of aqueous batteries.

2.
J Nanobiotechnology ; 22(1): 236, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724995

RESUMO

Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.


Assuntos
Células Epiteliais , Exossomos , MicroRNAs , Prostatite , Células Estromais , Masculino , Exossomos/metabolismo , Prostatite/genética , Prostatite/patologia , Prostatite/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Estromais/metabolismo , Células Estromais/patologia , Animais , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Próstata/patologia , Próstata/metabolismo , Dor Pélvica , Inflamação/genética , Inflamação/patologia , Camundongos , Sistema de Sinalização das MAP Quinases
3.
Plant Cell Rep ; 43(6): 143, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38750149

RESUMO

Key message BdDREB-39 is a DREB/CBF transcription factor, localized in the nucleus with transactivation activity, and BdDREB-39-overexpressing transgenic yeasts and tobacco enhanced the tolerance to oxidative stress.Abstract The DREB/CBF transcription factors are generally recognized to play an important factor in plant growth, development and response to various abiotic stresses. However, the mechanism of DREB/CBFs in oxidative stress response is largely unknown. This study isolated a DREB/CBF gene BdDREB-39 from Brachypodium distachyon (B. distachyon). Multiple sequence alignment and phylogenetic analysis showed that BdDREB-39 was closely related to the DREB proteins of oats, barley, wheat and rye and therefore its study can provide a reference for the excavation and genetic improvement of BdDREB-39 or its homologs in its closely related species. The transcript levels of BdDREB-39 were significantly up-regulated under H2O2 stress. BdDREB-39 was localised in the nucleus and functioned as a transcriptional activator. Overexpression of BdDREB-39 enhanced H2O2 tolerance in yeast. Transgenic tobaccos with BdDREB-39 had higher germination rates, longer root, better growth status, lesser reactive oxygen species (ROS) and malondialdehyde (MDA), and higher superoxide dismutase (SOD) and peroxidase (POD) activities than wild type (WT). The expression levels of ROS-related and stress-related genes were improved by BdDREB-39. In summary, these results revealed that BdDREB-39 can improve the viability of tobacco by regulating the expression of ROS and stress-related genes, allowing transgenic tobacco to accumulate lower levels of ROS and reducing the damage caused by ROS to cells. The BdDREB-39 gene has the potential for developing plant varieties tolerant to stress.


Assuntos
Brachypodium , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Nicotiana , Estresse Oxidativo , Proteínas de Plantas , Plantas Geneticamente Modificadas , Fatores de Transcrição , Nicotiana/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Oxidativo/genética , Brachypodium/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Filogenia
4.
Heliyon ; 10(7): e28786, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38576566

RESUMO

Heart failure (HF) and cancer are the two leading causes of death worldwide and affect one another in a bidirectional way. We aimed to identify hub therapeutic genes as potential biomarkers for the identification and treatment of HF and cancer. Gene expression data of heart samples from patients with ischemic HF (IHF) and healthy controls were retrieved from the GSE42955 and GSE57338 databases. Difference analysis and weighted gene co-expression network analysis (WGCNA) were used to identify key modules associated with IHF. The overlapping genes were subjected to gene and protein enrichment analyses to construct a protein-protein interaction (PPI) network, which was screened for hub genes among the overlapping genes. A total of eight hub genes were subjected to correlation, immune cell infiltration, and ROC analyses. Then we analyzed the roles of two significant genes in 33 tumor types to explore their potential as common targets in HF and cancer. A total of 85 genes were identified by WGCNA and differentially expressed gene (DEG) analyses. BRCA1, MED17, CENPA, RXRA, RXRB, SMARCA2, CDCA2, and PMS2 were identified as the hub genes with IHF. Finally, CENPA and BRCA1 were identified as potential common targets for IHF and cancer. These findings provide new perspectives for expanding our understanding of the etiology and underlying mechanisms of HF and cancer.

5.
J Immunother Cancer ; 12(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580333

RESUMO

BACKGROUND: The programmed cell death protein-1 (PD-1)/programmed death receptor ligand 1 (PD-L1) axis critically facilitates cancer cells' immune evasion. Antibody therapeutics targeting the PD-1/PD-L1 axis have shown remarkable efficacy in various tumors. Immuno-positron emission tomography (ImmunoPET) imaging of PD-L1 expression may help reshape solid tumors' immunotherapy landscape. METHODS: By immunizing an alpaca with recombinant human PD-L1, three clones of the variable domain of the heavy chain of heavy-chain only antibody (VHH) were screened, and RW102 with high binding affinity was selected for further studies. ABDRW102, a VHH derivative, was further engineered by fusing RW102 with the albumin binder ABD035. Based on the two targeting vectors, four PD-L1-specific tracers ([68Ga]Ga-NOTA-RW102, [68Ga]Ga-NOTA-ABDRW102, [64Cu]Cu-NOTA-ABDRW102, and [89Zr]Zr-DFO-ABDRW102) with different circulation times were developed. The diagnostic efficacies were thoroughly evaluated in preclinical solid tumor models, followed by a first-in-human translational investigation of [68Ga]Ga-NOTA-RW102 in patients with non-small cell lung cancer (NSCLC). RESULTS: While RW102 has a high binding affinity to PD-L1 with an excellent KD value of 15.29 pM, ABDRW102 simultaneously binds to human PD-L1 and human serum albumin with an excellent KD value of 3.71 pM and 3.38 pM, respectively. Radiotracers derived from RW102 and ABDRW102 have different in vivo circulation times. In preclinical studies, [68Ga]Ga-NOTA-RW102 immunoPET imaging allowed same-day annotation of differential PD-L1 expression with specificity, while [64Cu]Cu-NOTA-ABDRW102 and [89Zr]Zr-DFO-ABDRW102 enabled longitudinal visualization of PD-L1. More importantly, a pilot clinical trial shows the safety and diagnostic value of [68Ga]Ga-NOTA-RW102 immunoPET imaging in patients with NSCLCs and its potential to predict immune-related adverse effects following PD-L1-targeted immunotherapies. CONCLUSIONS: We developed and validated a series of PD-L1-targeted tracers. Initial preclinical and clinical evidence indicates that immunoPET imaging with [68Ga]Ga-NOTA-RW102 holds promise in visualizing differential PD-L1 expression, selecting patients for PD-L1-targeted immunotherapies, and monitoring immune-related adverse effects in patients receiving PD-L1-targeted treatments. TRIAL REGISTRATION NUMBER: NCT06165874.


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Compostos Heterocíclicos com 1 Anel , Neoplasias Pulmonares , Anticorpos de Domínio Único , Humanos , Antígeno B7-H1/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Radioisótopos de Gálio , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Receptor de Morte Celular Programada 1 , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/uso terapêutico
6.
Discov Oncol ; 15(1): 122, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625419

RESUMO

PURPOSE: The Gleason score (GS) and positive needles are crucial aggressive indicators of prostate cancer (PCa). This study aimed to investigate the usefulness of magnetic resonance imaging (MRI) radiomics models in predicting GS and positive needles of systematic biopsy in PCa. MATERIAL AND METHODS: A total of 218 patients with pathologically proven PCa were retrospectively recruited from 2 centers. Small-field-of-view high-resolution T2-weighted imaging and post-contrast delayed sequences were selected to extract radiomics features. Then, analysis of variance and recursive feature elimination were applied to remove redundant features. Radiomics models for predicting GS and positive needles were constructed based on MRI and various classifiers, including support vector machine, linear discriminant analysis, logistic regression (LR), and LR using the least absolute shrinkage and selection operator. The models were evaluated with the area under the curve (AUC) of the receiver-operating characteristic. RESULTS: The 11 features were chosen as the primary feature subset for the GS prediction, whereas the 5 features were chosen for positive needle prediction. LR was chosen as classifier to construct the radiomics models. For GS prediction, the AUC of the radiomics models was 0.811, 0.814, and 0.717 in the training, internal validation, and external validation sets, respectively. For positive needle prediction, the AUC was 0.806, 0.811, and 0.791 in the training, internal validation, and external validation sets, respectively. CONCLUSIONS: MRI radiomics models are suitable for predicting GS and positive needles of systematic biopsy in PCa. The models can be used to identify aggressive PCa using a noninvasive, repeatable, and accurate diagnostic method.

7.
Gene Ther ; 31(5-6): 324-334, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627469

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurons in various models of Parkinson's disease (PD). Cell-based GDNF gene delivery mitigates neurodegeneration and improves both motor and non-motor functions in PD mice. As PD is a chronic condition, this study aims to investigate the long-lasting benefits of hematopoietic stem cell (HSC)-based macrophage/microglia-mediated CNS GDNF (MMC-GDNF) delivery in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. The results indicate that GDNF treatment effectively ameliorated MPTP-induced motor deficits for up to 12 months, which coincided with the protection of nigral dopaminergic neurons and their striatal terminals. Also, the HSC-derived macrophages/microglia were recruited selectively to the neurodegenerative areas of the substantia nigra. The therapeutic benefits appear to involve two mechanisms: (1) macrophage/microglia release of GDNF-containing exosomes, which are transferred to target neurons, and (2) direct release of GDNF by macrophage/microglia, which diffuses to target neurons. Furthermore, the study found that plasma GDNF levels were significantly increased from baseline and remained stable over time, potentially serving as a convenient biomarker for future clinical trials. Notably, no weight loss, altered food intake, cerebellar pathology, or other adverse effects were observed. Overall, this study provides compelling evidence for the long-term therapeutic efficacy and safety of HSC-based MMC-GDNF delivery in the treatment of PD.


Assuntos
Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Macrófagos , Microglia , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Camundongos , Macrófagos/metabolismo , Microglia/metabolismo , Masculino , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Neurônios Dopaminérgicos/metabolismo , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Exossomos/metabolismo , Substância Negra/metabolismo
8.
Cell Signal ; 119: 111184, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640982

RESUMO

Estrogen receptor alpha (ERα) is expressed in approximately 70% of breast cancer cases and determines the sensitivity and effectiveness of endocrine therapy. 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase3 (PFKFB3) is a glycolytic enzyme that is highly expressed in a great many human tumors, and recent studies have shown that it plays a significant role in improving drug sensitivity. However, the role of PFKFB3 in regulating ERα expression and the underlying mechanism remains unclear. Here, we find by using immunohistochemistry (IHC) that PFKFB3 is elevated in ER-positive breast cancer and high expression of PFKFB3 resulted in a worse prognosis. In vitro and in vivo experiments verify that PFKFB3 promotes ER-positive breast cancer cell proliferation. The overexpression of PFKFB3 promotes the estrogen-independent ER-positive breast cancer growth. In an estrogen-free condition, RNA-sequencing data from MCF7 cells treated with siPFKFB3 showed enrichment of the estrogen signaling pathway, and a luciferase assay demonstrated that knockdown of PFKFB3 inhibited the ERα transcriptional activity. Mechanistically, down-regulation of PFKFB3 promotes STUB1 binding to ERα, which accelerates ERα degradation by K48-based ubiquitin linkage. Finally, growth of ER-positive breast cancer cells in vivo was more potently inhibited by fulvestrant combined with the PFKFB3 inhibitor PFK158 than for each drug alone. In conclusion, these data suggest that PFKFB3 is identified as an adverse prognosis factor for ER-positive breast cancer and plays a previously unrecognized role in the regulation of ERα stability and activity. Our results further explores an effective approach to improve fulvestrant sensitivity through the early combination with a PFKFB3 inhibitor.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Fulvestranto , Fosfofrutoquinase-2 , Humanos , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinase-2/genética , Receptor alfa de Estrogênio/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Fulvestranto/farmacologia , Animais , Estabilidade Proteica/efeitos dos fármacos , Camundongos , Células MCF-7 , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Carcinogênese/metabolismo , Carcinogênese/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos Hormonais/farmacologia , Linhagem Celular Tumoral
9.
Mol Med ; 30(1): 56, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671369

RESUMO

BACKGROUND: Ginsenoside Rh2 (G-Rh2), a steroidal compound extracted from roots of ginseng, has been extensively studied in tumor therapy. However, its specific regulatory mechanism in non-small cell lung cancer (NSCLC) is not well understood. Pyruvate dehydrogenase kinase 4 (PDK4), a central regulator of cellular energy metabolism, is highly expressed in various malignant tumors. We investigated the impact of G-Rh2 on the malignant progression of NSCLC and how it regulated PDK4 to influence tumor aerobic glycolysis and mitochondrial function. METHOD: We examined the inhibitory effect of G-Rh2 on NSCLC through I proliferation assay, migration assay and flow cytometry in vitro. Subsequently, we verified the ability of G-Rh2 to inhibit tumor growth and metastasis by constructing subcutaneous tumor and metastasis models in nude mice. Proteomics analysis was conducted to analyze the action pathways of G-Rh2. Additionally, we assessed glycolysis and mitochondrial function using seahorse, PET-CT, Western blot, and RT-qPCR. RESULT: Treatment with G-Rh2 significantly inhibited tumor proliferation and migration ability both in vitro and in vivo. Furthermore, G-Rh2 inhibited the tumor's aerobic glycolytic capacity, including glucose uptake and lactate production, through the HIF1-α/PDK4 pathway. Overexpression of PDK4 demonstrated that G-Rh2 targeted the inhibition of PDK4 expression, thereby restoring mitochondrial function, promoting reactive oxygen species (ROS) accumulation, and inducing apoptosis. When combined with sodium dichloroacetate, a PDK inhibitor, it complemented the inhibitory capacity of PDKs, acting synergistically as a detoxifier. CONCLUSION: G-Rh2 could target and down-regulate the expression of HIF-1α, resulting in decreased expression of glycolytic enzymes and inhibition of aerobic glycolysis in tumors. Additionally, by directly targeting mitochondrial PDK, it elevated mitochondrial oxidative phosphorylation and enhanced ROS accumulation, thereby promoting tumor cells to undergo normal apoptotic processes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ginsenosídeos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Pulmonares , Fosforilação Oxidativa , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Humanos , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Camundongos , Linhagem Celular Tumoral , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos Nus , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
10.
Gut Pathog ; 16(1): 25, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678229

RESUMO

BACKGROUND: Peutz-Jeghers syndrome (PJS) is a rare genetic disorder characterized by the development of pigmented spots, gastrointestinal polyps and increased susceptibility to cancers. Currently, most studies have investigated intestinal microbiota through fecal microbiota, and there are few reports about mucosa-associated microbiota. It remains valuable to search for the key intestinal microbiota or abnormal metabolic pathways linked to PJS. AIM: This study aimed to assess the structure and composition of mucosa-associated microbiota in patients with PJS and to explore the potential influence of intestinal microbiota disorders and metabolite changes on PJS. METHODS: The bacterial composition was analyzed in 13 PJS patients and 12 controls using 16S rRNA gene sequencing (Illumina MiSeq) for bacteria. Differential analyses of the intestinal microbiota were performed from the phylum to species level. Liquid chromatography-tandem mass spectrometry (LC‒MS) was used to detect the differentially abundant metabolites of PJS patients and controls to identify different metabolites and metabolic biomarkers of small intestinal mucosa samples. RESULTS: High-throughput sequencing confirmed the special characteristics and biodiversity of the mucosa microflora in patients with PJS. They had lower bacterial biodiversity than controls. The abundance of intestinal mucosal microflora was significantly lower than that of fecal microflora. In addition, lipid metabolism, amino acid metabolism, carbohydrate metabolism, nucleotide metabolism and other pathways were significantly different from those of controls, which were associated with the development of the enteric nervous system, intestinal inflammation and development of tumors. CONCLUSION: This is the first report on the mucosa-associated microbiota and metabolite profile of subjects with PJS, which may be meaningful to provide a structural basis for further research on intestinal microecology in PJS.

11.
EMBO Mol Med ; 16(5): 1143-1161, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565806

RESUMO

Accurately predicting and selecting patients who can benefit from targeted or immunotherapy is crucial for precision therapy. Trophoblast cell surface antigen 2 (Trop2) has been extensively investigated as a pan-cancer biomarker expressed in various tumours and plays a crucial role in tumorigenesis through multiple signalling pathways. Our laboratory successfully developed two 68Ga-labelled nanobody tracers that can rapidly and specifically target Trop2. Of the two tracers, [68Ga]Ga-NOTA-T4, demonstrated excellent pharmacokinetics in preclinical mouse models and a beagle dog. Moreover, [68Ga]Ga-NOTA-T4 immuno-positron emission tomography (immunoPET) allowed noninvasive visualisation of Trop2 heterogeneous and differential expression in preclinical solid tumour models and ten patients with solid tumours. [68Ga]Ga-NOTA-T4 immunoPET could facilitate clinical decision-making through patient stratification and response monitoring during Trop2-targeted therapies.


Assuntos
Antígenos de Neoplasias , Moléculas de Adesão Celular , Neoplasias , Tomografia por Emissão de Pósitrons , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/imunologia , Humanos , Animais , Moléculas de Adesão Celular/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/imunologia , Camundongos , Cães , Tomografia por Emissão de Pósitrons/métodos , Feminino , Anticorpos de Domínio Único/imunologia
12.
Int Immunopharmacol ; 132: 111939, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608471

RESUMO

BACKGROUND: In this study, we investigated whether Exo regulate the proliferation and invasion of PC. METHODS: In this study, we isolated the Eriobotrya japonica Exo using Ultra-high speed centrifugal method. Mass spectrum were used for Exo active components analysis. PC (Capan-1 and Bxpc-3) cells proliferation, migration, and apoptosis were detected using CCK8, ethynyldeoxyuridine, transwell, wound healing, and flow cytometry analyses. We also constructed a lung metastatic mouse model and subcutaneous tumor model to illustrate the regulation effect of Exo or active components. Proteomics were used to reveal the regulatory mechanism responsible for the observed effects. RESULTS: We isolated Eriobotrya japonica Exo and found that Exo treatment significantly suppressed cell migration and proliferation in both in vivo and in vitro using Capan-1. Mass spectrum for Exo active components analysis found that Exo contains high amounts of corosolic acid (CRA). The further study found that CRA treatment inhibit the proliferation, migration, and increased cell death of both Capan-1 and Bxpc-3 cells in a concentration-dependent manner. In vivo experiments confirmed that CRA inhibited pulmonary metastasis by decreasing the number of metastatic foci. Cell proteomics analysis showed that CRA treatment induced spermidine/spermine N1-acetyltransferase 1 (SAT1)-dependent ferroptosis. Treatment with the ferroptosis suppressor ferrostatin-1 significantly reversed CRA-induced cell apoptosis. CONCLUSION: The data suggested that corosolic acid delivered by exosomes from Eriobotrya japonica decreased pancreatic cancer cell proliferation and invasion by inducing SAT1-mediated ferroptosis.


Assuntos
Acetiltransferases , Proliferação de Células , Eriobotrya , Exossomos , Ferroptose , Neoplasias Pulmonares , Neoplasias Pancreáticas , Animais , Ferroptose/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Humanos , Proliferação de Células/efeitos dos fármacos , Exossomos/metabolismo , Camundongos , Linhagem Celular Tumoral , Acetiltransferases/metabolismo , Acetiltransferases/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/patologia , Movimento Celular/efeitos dos fármacos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Invasividade Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Camundongos Endogâmicos BALB C , Masculino , Apoptose/efeitos dos fármacos
13.
Cell Mol Biol Lett ; 29(1): 43, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539084

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are single-stranded RNAs with covalently closed structures that have been implicated in cancer progression. However, the regulatory mechanisms remain largely unclear. So, the aim of this study was to reveal the role and regulatory mechanisms of circ-SLC16A1. METHODS: In this study, next-generation sequencing was used to identify abnormally expressed circRNAs between cancerous and para-carcinoma tissues. Fluorescence in situ hybridization and quantitative reverse transcription polymerase chain reaction were performed to assess the expression patterns of circ-solute carrier family 16 member 1 (SLC16A1) in non-small cell lung cancer (NSCLC) cells and tissue specimens. The dual-luciferase reporter assay was utilized to identify downstream targets of circ-SLC16A1. Transwell migration, wound healing, 5-ethynyl-2'-deoxyuridine incorporation, cell counting, and colony formation assays were conducted to assess the proliferation and migration of NSCLC cells. A mouse tumor xenograft model was employed to determine the roles of circ-SLC16A1 in NSCLC progression and metastasis in vivo. RESULTS: The results found that circ-SLC16A1 was upregulated in NSCLC cells and tissues. Downregulation of circ-SLC16A1 inhibited tumor growth by reducing proliferation, lung metastasis, and lymphatic metastasis of NSCLC cells, and arrested the cell cycle in the G1 phase. Also, silencing of circ-SLC16A1 promoted apoptosis of NSCLC cells. The results of bioinformatics analysis and the dual-luciferase reporter assay confirmed that microRNA (miR)-1287-5p and profilin 2 (PFN2) are downstream targets of circ-SLC16A1. PFN2 overexpression or circ-SLC16A1 inhibition restored proliferation and migration of NSCLC cells after silencing of circ-SLC16A1. PFN2 overexpression restored migration and proliferation of NSCLC cells post miR-1287-5p overexpression. CONCLUSIONS: Collectively, these findings show that miR-1287-5p/PFN2 signaling was associated with downregulation of circ-SLC16A1 and reduced invasion and proliferation of NSCLC cells. So, circ-SLC16A1 is identified as a mediator of multiple pro-oncogenic signaling pathways in NSCLC and can be targeted to suppress tumor progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Hibridização in Situ Fluorescente , Luciferases , Neoplasias Pulmonares/genética , MicroRNAs/genética , Profilinas , RNA Circular/genética
14.
Acad Radiol ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431484

RESUMO

RATIONALE AND OBJECTIVES: This study explored the clinical value of dual time-point 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) imaging for differentiating lymph node metastasis from lymph nodes with reactive hyperplasia. METHODS: 250 lymph nodes from 153 bladder cancer patients who underwent 18F-FDG PET/computed tomography (CT) delayed diuretic imaging were analyzed. The maximum and mean standardized uptake values (SUVmax and SUVmean, respectively), metabolic tumor volume (MTV), and related delay indices before and after PET delayed imaging were obtained. Relationships with outcomes were analyzed using nonparametric and multivariate analyses. Receiver operating characteristic curves and nomograms were drawn to predict lymph node metastasis. RESULTS: Delayed PET/CT imaging showed better detection of hyperplasia and metastatic lymph nodes. Delayed imaging with a cutoff SUVmax of 2.0 or 2.5 increased the detection rate of metastatic lymph nodes by 4.1%, and 6.9%, respectively. Delayed imaging often showed speckle-like radioactive foci in lymph nodes with reactive hyperplasia and increased FDG uptake throughout the nodes in metastatic lymph nodes. The lymph node short-axis diameter, SUVmean, and delayed index of MTV (DIMTV) were independent predictors for differentiating metastatic lymph nodes from reactive hyperplasia, and their combination showed better differentiation performance than the individual predictors. In high-risk patients, the probability of lymph node metastasis was as high as 97.6%. CONCLUSION: Dual time-point imaging can detect more metastatic lymph nodes. Some lymph nodes with hyperplasia show speckle-like radioactive foci on delayed imaging. The lymph node short-axis diameter, SUVmean, and DIMTV are three important parameters for predicting lymph node metastasis.

15.
Nat Biomed Eng ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438799

RESUMO

Extracellular pH impacts many molecular, cellular and physiological processes, and hence is tightly regulated. Yet, in tumours, dysregulated cancer cell metabolism and poor vascular perfusion cause the tumour microenvironment to become acidic. Here by leveraging fluorescent pH nanoprobes with a transistor-like activation profile at a pH of 5.3, we show that, in cancer cells, hydronium ions are excreted into a small extracellular region. Such severely polarized acidity (pH <5.3) is primarily caused by the directional co-export of protons and lactate, as we show for a diverse panel of cancer cell types via the genetic knockout or inhibition of monocarboxylate transporters, and also via nanoprobe activation in multiple tumour models in mice. We also observed that such spot acidification in ex vivo stained snap-frozen human squamous cell carcinoma tissue correlated with the expression of monocarboxylate transporters and with the exclusion of cytotoxic T cells. Severely spatially polarized tumour acidity could be leveraged for cancer diagnosis and therapy.

16.
Eur J Cancer ; 202: 114008, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479118

RESUMO

BACKGROUND: NRAS-mutant melanoma is an aggressive subtype with poor prognosis; however, there is no approved targeted therapy to date worldwide. METHODS: We conducted a multicenter, single-arm, phase II, pivotal registrational study that evaluated the efficacy and safety of the MEK inhibitor tunlametinib in patients with unresectable, stage III/IV, NRAS-mutant melanoma (NCT05217303). The primary endpoint was objective response rate (ORR) assessed by independent radiological review committee (IRRC) per Response Evaluation Criteria in Solid Tumors (RECIST) v1.1. The secondary endpoints included progression-free survival (PFS), disease control rate (DCR), duration of response(DOR), overall survival (OS) and safety. FINDINGS: Between November 2, 2020 and February 11, 2022, a total of 100 patients were enrolled. All (n = 100) patients received at least one dose of tunlametinib (safety analysis set [SAS]) and 95 had central laboratory-confirmed NRAS mutations (full analysis set [FAS]). In the FAS, NRAS mutations were observed at Q61 (78.9%), G12 (15.8%) and G13 (5.3%). The IRRC-assessed ORR was 35.8%, with a median DOR of 6.1 months. The median PFS was 4.2 months, DCR was 72.6% and median OS was 13.7 months. Subgroup analysis showed that in patients who had previously received immunotherapy, the ORR was 40.6%. No treatment-related deaths occurred. INTERPRETATION: Tunlametinib showed promising antitumor activity with a manageable safety profile in patients with advanced NRAS-mutant melanoma, including those who had prior exposure to immunotherapy. The findings warrant further validation in a randomized clinical trial.


Assuntos
Melanoma , Humanos , GTP Fosfo-Hidrolases/genética , Imunoterapia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Quinases de Proteína Quinase Ativadas por Mitógeno , Intervalo Livre de Progressão , Publicação Pré-Registro
17.
J Leukoc Biol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527797

RESUMO

Classic myeloproliferative neoplasms lacking the Philadelphia chromosome are stem cell disorders characterized by the proliferation of myeloid cells in the bone marrow and increased counts of peripheral blood cells. The occurrence of thrombotic events is a common complication in myeloproliferative neoplasms. The heightened levels of cytokines play a substantial role in the morbidity and mortality of these patients, establishing a persistent proinflammatory condition that culminates in thrombosis. The etiology of thrombosis remains intricate and multifaceted, involving blood cells and endothelial dysfunction, the inflammatory state, and the coagulation cascade, leading to hypercoagulability. Leukocytes play a pivotal role in the thromboinflammatory process of myeloproliferative neoplasms by releasing various proinflammatory and prothrombotic factors as well as interacting with other cells, which contributes to the amplification of the clotting cascade and subsequent thrombosis. The correlation between increased leukocyte counts and thrombotic risk has been established. However, there is a need for an accurate biomarker to assess leukocyte activation. Lastly, tailored treatments to address the thrombotic risk in myeloproliferative neoplasms are needed. Therefore, this review aims to summarize the potential mechanisms of leukocyte involvement in myeloproliferative neoplasm thromboinflammation, propose potential biomarkers for leukocyte activation, and discuss promising treatment options for controlling myeloproliferative neoplasm thromboinflammation.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38514483

RESUMO

BACKGROUND AND PURPOSE: [68Ga]Ga-PSMA PET imaging has been extensively utilized for the detection of biochemical recurrence (BCR) in prostate cancer. However, the detection rate declines to merely 10-40% when PSA levels are < 0.2 ng/mL employing short axial field-of-view (SAFOV) PET. Prior studies exhibited superior detection rates with total-body [68Ga]Ga-PSMA-11 PET compared to SAFOV [68Ga]Ga-PSMA-11 PET in BCR patients with PSA > 0.2 ng/mL. Nevertheless, the diagnostic utility of total-body [68Ga]Ga-PSMA-11 PET for BCR patients when PSA is < 0.2 ng/mL remains unclear. This study aimed to assess whether total-body [68Ga]Ga-PSMA-11 PET/CT could improve the detection rate compared to SAFOV [68Ga]Ga-PSMA-11 PET/CT in BCR patients with PSA < 0.2 ng/mL. METHODS: Eighty BCR patients with PSA < 0.2 ng/mL underwent total-body [68Ga]Ga-PSMA-11 PET/CT. These patients were matched by baseline qualities to another 80 patients who received SAFOV [68Ga]Ga-PSMA-11 PET/CT. The detection rates of total-body [68Ga]Ga-PSMA-11 PET/CT and SAFOV [68Ga]Ga-PSMA-11 PET/CT were compared utilizing a chi-square test and stratified analysis. Image quality of total-body [68Ga]Ga-PSMA PET/CT and SAFOV [68Ga]Ga-PSMA-11 PET/CT was assessed based on subjective scoring and objective parameters. The objective parameters measured were SUVmax, SUVmean, standard deviation (SD) of SUV, and signal-to-noise ratio (SNR) of liver and gluteus maximus. RESULTS: The image quality of total-body [68Ga]Ga-PSMA PET/CT was superior to that of SAFOV [68Ga]Ga-PSMA-11 PET/CT in both early and delayed scans. The detection rate of total-body [68Ga]Ga-PSMA PET/CT for BCR patients with PSA < 0.2 ng/mL was significantly higher than that of SAFOV [68Ga]Ga-PSMA-11 PET/CT (73.75% vs. 43.75%, P < 0.001). Total-body [68Ga]Ga-PSMA PET/CT resulted in noteworthy modifications to the treatment regimen when contrasted with SAFOV [68Ga]Ga-PSMA-11 PET/CT. CONCLUSIONS: In BCR patients with PSA < 0.2 ng/mL, total-body [68Ga]Ga-PSMA-11 PET/CT not only demonstrated a significantly higher detection rate compared to SAFOV [68Ga]Ga-PSMA-11 PET/CT but also led to significant alterations in treatment regimens.

19.
Transplantation ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499506

RESUMO

BACKGROUND: Co-infection of JC polyomavirus (JCPyV) and BK polyomavirus (BKPyV) is uncommon in kidney transplant recipients, and the prognosis is unclear. This study aimed to investigate the effect of concurrent JCPyV-DNAemia on graft outcomes in BKPyV-infected kidney transplant recipients with polyomavirus-associated nephropathy (PyVAN). METHODS: A total of 140 kidney transplant recipients with BKPyV replication and PyVAN, 122 without concurrent JCPyV-DNAemia and 18 with JCPyV-DNAemia were included in the analysis. Least absolute shrinkage and selection operator regression analysis and multivariate Cox regression analysis were used to identify prognostic factors for graft survival. A nomogram for predicting graft survival was created and evaluated. RESULTS: The median tubulitis score in the JCPyV-DNAemia-positive group was higher than in JCPyV-DNAemia-negative group (P = 0.048). At last follow-up, the graft loss rate in the JCPyV-DNAemia-positive group was higher than in the JCPyV-DNAemia-negative group (50% versus 25.4%; P = 0.031). Kaplan-Meier analysis showed that the graft survival rate in the JCPyV-DNAemia-positive group was lower than in the JCPyV-DNAemia-negative group (P = 0.003). Least absolute shrinkage and selection operator regression and multivariate Cox regression analysis demonstrated that concurrent JCPyV-DNAemia was an independent risk factor for graft survival (hazard ratio = 4.808; 95% confidence interval: 2.096-11.03; P < 0.001). The nomogram displayed favorable discrimination (C-index = 0.839), concordance, and clinical applicability in predicting graft survival. CONCLUSIONS: Concurrent JCPyV-DNAemia is associated with a worse graft outcome in BKPyV-infected kidney transplant recipients with PyVAN.

20.
Adv Sci (Weinh) ; : e2309857, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509870

RESUMO

Intercellular communication often relies on exosomes as messengers and is critical for cancer metastasis in hypoxic tumor microenvironment. Some circular RNAs (circRNAs) are enriched in cancer cell-derived exosomes, but little is known about their ability to regulate intercellular communication and cancer metastasis. Here, by systematically analyzing exosomes secreted by non-small cell lung cancer (NSCLC) cells, a hypoxia-induced exosomal circPLEKHM1 is identified that drives NSCLC metastasis through polarizing macrophages toward to M2 type. Mechanistically, exosomal circPLEKHM1 promoted PABPC1-eIF4G interaction to facilitate the translation of the oncostatin M receptor (OSMR), thereby promoting macrophage polarization for cancer metastasis. Importantly, circPLEKHM1-targeted therapy significantly reduces NSCLC metastasis in vivo. circPLEKHM1 serves as a prognostic biomarker for metastasis and poor survival in NSCLC patients. This study unveils a new circRNA-mediated mechanism underlying how cancer cells crosstalk with macrophages within the hypoxic tumor microenvironment to promote metastasis, highlighting the importance of exosomal circPLEKHM1 as a prognostic biomarker and therapeutic target for lung cancer metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA