Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(4): 2141-2153, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35049278

RESUMO

The present work is part of our ongoing quest for developing functional inorganic complexes using unorthodox pyridyl-pyrazolyl-based ligands. Accordingly, we report herein the synthesis, characterization, and luminescence and magnetic properties of four 3d-4f mixed-metal complexes with a general core of Ln2Zn6 (Ln = Dy, Gd, Tb, and Eu). In stark contrast to the popular wisdom of using a compartmental ligand with separate islands of hard and soft coordinating sites for selective coordination, we have vindicated our approach of using a ligand with overcrowded N-coordinating sites that show equal efficiency with both 4f and 3d metals toward multinuclear cage-cluster formation. The encouraging red and green photolumiscent features of noncytotoxic Eu2Zn6 and Tb2Zn6 complexes along with their existence in nanoscale dimension have been exploited with live-cell confocal microscopy imaging of human breast adenocarcinoma (MCF7) cells. The magnetic features of the Dy2Zn6 complex confirm the single-molecule-magnet behavior with befitting frequency- and temperature-dependent out-of-phase signals along with an Ueff value of ∼5 K and a relaxation time of 8.52 × 10-6 s. The Gd2Zn6 complex, on the other hand, shows cryogenic magnetic refrigeration with an entropy change of 11.25 J kg-1 K-1 at a magnetic field of 7 T and at 2 K. Another important aspect of this work reflects the excellent agreement between the experimental results and theoretical calculations. The theoretical studies carried out using the broken-symmetry density functional theory, ORCA suite of programs, and MOLCAS calculations using the complete-active-space self-consistent-field method show an excellent synergism with the experimentally measured magnetic and spectroscopic data.

2.
Dalton Trans ; 50(10): 3593-3609, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33624673

RESUMO

In this contribution, we report the synthesis, characterization and luminescence-magnetic properties of Ln-clusters (Ln = Gd3+, Eu3+ and Tb3+) using a new pyridine-pyrazole functionalized ligand fitted with a chromophoric phenanthroline backbone. The unorthodox N-rich ligand forms isostructural trinuclear lanthanide complexes with a topology that closely resembles two interdigitating hairpins. The clusters crystallize in chiral space groups and also exhibit chirality for bulk samples, which were further confirmed using solid state CD spectra. Magnetic studies on the complexes reveal their interesting features while the Gd cluster shows a significant cryogenic magnetic cooling behaviour with a moderately high magnetic entropy change of -23.42 J kg-1 K-1 at 7 T and 2 K. On the other hand, Eu and Tb complexes exhibit interesting fluorescence properties. The compounds were subsequently used as fluorescent probes for the imaging of human breast adenocarcinoma (MCF7) cells. Live cell confocal microscopy images show that the complexes penetrate beyond the usual cytoplasm region and can be useful in imaging the nucleus region of MCF7 cells.


Assuntos
Complexos de Coordenação/química , Elementos da Série dos Lantanídeos/química , Imagem Óptica , Fenantrolinas/química , Complexos de Coordenação/síntese química , Humanos , Ligantes , Células MCF-7 , Fenômenos Magnéticos , Estrutura Molecular , Pirazóis , Piridinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA