Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 849
Filtrar
1.
Mol Pharm ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742943

RESUMO

One of the most significant reasons hindering the clinical translation of nanomedicines is the rapid clearance of intravenously injected nanoparticles by the mononuclear phagocyte system, particularly by Kupffer cells in the liver, leading to an inefficient delivery of nanomedicines for tumor treatment. The threshold theory suggests that the liver's capacity to clear nanoparticles is limited, and a single high dose of nanoparticles can reduce the hepatic clearance efficiency, allowing more nanomedicines to reach tumor tissues and enhance therapeutic efficacy. Building upon this theory, researchers have conducted numerous validation studies based on the same nanoparticle carrier systems. These studies involve the use of albumin nanoparticles to improve the therapeutic efficacy of albumin nanomedicines as well as polyethylene glycol (PEG)-modified liposomal nanoparticles to enhance the efficacy of PEGylated liposomal nanomedicines. However, there is no research indicating the feasibility of the threshold theory when blank nanoparticles and nanomedicine belong to different nanoparticle carrier systems currently. In this study, we prepared two different sizes of albumin nanoparticles by using bovine serum albumin. We used the marketed nanomedicine liposomal doxorubicin hydrochloride injection (trade name: LIBOD, manufacturer: Shanghai Fudan-zhangjiang Biopharmaceutical Co., Ltd.), as the representative nanomedicine. Through in vivo experiments, we found that using threshold doses of albumin nanoparticles still can reduce the clearance rate of LIBOD, prolong its time in vivo, increase the area under the plasma concentration-time curve (AUC), and also lead to an increased accumulation of the drug at the tumor site. Furthermore, evaluation of in vivo efficacy and safety further indicates that threshold doses of 100 nm albumin nanoparticles can enhance the antitumor effect of LIBOD without causing harm to the animals. During the study, we found that the particle size of albumin nanoparticles influenced the in vivo distribution of the nanomedicine at the same threshold dose. Compared with 200 nm albumin nanoparticles, 100 nm albumin nanoparticles more effectively reduce the clearance efficiency of LIBOD and enhance nanomedicine accumulation at the tumor site, warranting further investigation. This study utilized albumin nanoparticles to reduce hepatic clearance efficiency and enhance the delivery efficiency of nonalbumin nanocarrier liposomal nanomedicine, providing a new avenue to improve the efficacy and clinical translation of nanomedicines with different carrier systems.

2.
Small ; : e2401438, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693084

RESUMO

The applications of amino acid-based polymers are impeded by their limited structure and functions. Herein, a small library of methionine-based polymers (Met-P) with programmed structure and reactive oxygen species (ROS)-responsive properties is developed for tumor therapy. The Met-P can self-assemble into sub-100 nm nanoparticles (NPs) and effectively load anticancer drugs (such as paclitaxel (PTX) (P@Met-P NPs)) via the nanoprecipitation method. The screened NPs with superior stability and high drug loading are further evaluated in vitro and in vivo. When encountering with ROS, the Met-P polymers will be oxidized and then switch from a hydrophobic to a hydrophilic state, triggering the rapid and self-accelerated release of PTX. The in vivo results indicated that the screened P@2Met10 NPs possessed significant anticancer performance and effectively alleviated the side effects of PTX. More interestingly, the blank 2Met10 NPs displayed an obvious self-tumor inhibiting efficacy. Furthermore, the other Met-P NPs (such as 2Met8, 4Met8, and 4Met10) are also found to exhibit varied self-anti-cancer capabilities. Overall, this ROS-responsive Met-P library is a rare anticancer platform with hydrophobic/hydrophilic switching, controlled drug release, and self-anticancer therapy capability.

3.
Surgery ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38760234

RESUMO

BACKGROUND: The survival paradox (ie, the prognosis of the population at earlier tumor stages is worse than that of the population at later stages) has been observed in colorectal cancer based on the American Joint Committee on Cancer Tumor-Nodes-Metastases staging system. We aimed to clarify the reason for the survival paradox and its impact on patient treatment. METHODS: We conducted a retrospective study analyzing eligible patients with colorectal cancer from the Surveillance, Epidemiology, and End Results database and Zhejiang Cancer Hospital between 2010 and 2019. Adjusting for confounders using propensity score matching allowed confirmation of the effect of staging on the survival paradox. RESULTS: Based on the Surveillance, Epidemiology, and End Results database, the subgroups with survival paradox might be IIB/C versus IIIA, IIA versus IIIA, and T4N0 (IIB/C) versus T3N1 (IIIB). After propensity score matching, stage IIB/C still had a worse prognosis than stage IIIA (5-year overall survival: 69.3% vs 78.5%, P < .001). Interestingly, the proportion of stage IIIA people receiving chemotherapy was higher than that of stage IIB/C (P < .001), and logistic regression models showed that staging was the reason for deciding whether a patient receives chemotherapy or not. These phenomena between stage IIB/C and IIIA were verified in the local database. CONCLUSION: These results suggested that the survival paradox was mainly due to underestimation of stage T4 weights or overestimation of stage N1 weights, and the low proportion of chemotherapy in patients with T4N0M0 colorectal cancer (proven to be more malignant than stage IIIA) might be related to the assignment to earlier stages, resulting in a lack of attention and poor compliance to chemotherapy in these patients.

4.
Water Res ; 256: 121621, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642536

RESUMO

Peracetic acid (PAA) has emerged as a new effective oxidant for various contaminants degradation through advanced oxidation process (AOP). In this study, sulfidated nano zero-valent iron-copper (S-nZVIC) with low Cu doping and sulfidation was synthesized for PAA activation, resulting in more efficient degradation of sulfamethoxazole (SMX, 20 µM) and other contaminants using a low dose of catalyst (0.05 g/L) and oxidant (100 µM). The characterization results suggested that S-nZVIC presented a more uniform size and distribution with fewer metal oxides, as the agglomeration and oxidation were inhibited. More significantly, doped Cu0 and sulfidation significantly enhanced the generation and contribution of •OH but decreased that of R-O• in S-nZVIC/PAA/SMX system compared with that of nZVIC and S-nZVI, accounting for the relatively high degradation efficiency of 97.7% in S-nZVIC/PAA/SMX system compared with 85.7% and 78.9% in nZVIC/PAA/SMX and S-nZVI/PAA/SMX system, respectively. The mechanisms underlying these changes were that (i) doped Cu° could promote the regeneration of Fe(Ⅱ) for strengthened PAA activation through mediating Fe(Ⅱ)/Fe(Ⅲ) cycle by Cu(Ⅰ)/Cu(Ⅱ) cycle; (ii) S species might consume part of R-O•, resulting in a decreased contribution of R-O• in SMX degradation; (iii) sulfidation increased the electrical conductivity, thus facilitating the electron transfer from S-nZVIC to PAA. Consequently, the dominant reactive oxygen species transited from R-O• to •OH to degrade SMX more efficiently. The degradation pathways, intermediate products and toxicity were further analyzed through density functional theory (DFT) calculations, liquid chromatography-mass spectrometry (LC-MS) and T.E.S.T software analysis, which proved the environmental friendliness of this process. In addition, S-nZVIC exhibited high stability, recyclability and degradation efficiency over a wide pH range (3.0∼9.0). This work provides a new insight into the rational design and modification of nano zero-valent metals for efficient wastewater treatment through adjusting the dominant reactive oxygen species (ROS) into the more active free radicals.


Assuntos
Cobre , Ferro , Ferro/química , Cobre/química , Ácido Peracético/química , Oxirredução , Poluentes Químicos da Água/química , Catálise
6.
Artigo em Inglês | MEDLINE | ID: mdl-38634257

RESUMO

BACKGROUND: The indication of laparoscopic liver resection (LLR) for treating large hepatocellular carcinoma (HCC) is controversial. In this study, we compared the short-term and long-term outcomes of LLR and open liver resection (OLR) for large HCC. MATERIAL AND METHODS: We searched eligible articles about LLR versus OLR for large HCC in PubMed, Cochrane Library, and EMBASE and performed a meta-analysis. RESULTS: Eight publications involving 1,338 patients were included. Among them, 495 underwent LLR and 843 underwent OLR. The operation time was longer in the LLR group (MD: 22.23, 95% CI: 4.14-40.33, p = 0.02). but the postoperative hospital stay time was significantly shorter (MD : -4.88, CI: -5.55 to -4.23, p < 0.00001), and the incidence of total postoperative complications and major complications were significantly fewer (OR: 0.49, 95% CI:0.37-0.66, p < 0.00001; OR: 0.54, 95% CI:0.36 - 0.82, p = 0.003, respectively). Patients in the laparoscopic group had no significant difference in intraoperative blood loss, intraoperative transfusion rate, resection margin size, R0 resection rate, three-year overall survival (OS) and three-year disease-free survival (DFS). CONCLUSION: LLR for large HCC is safe and feasible. This surgical strategy will not affect the long-term outcomes of patients.

7.
iScience ; 27(5): 109674, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38646169

RESUMO

Cancer-associated fibroblasts (CAFs) have been shown to play a key role in prostate cancer treatment resistance, but the role of CAFs in the initial course of enzalutamide therapy for prostate cancer remains unclear. Our research revealed that CAFs secrete CCL5, which promotes the upregulation of androgen receptor (AR) expression in prostate cancer cells, leading to resistance to enzalutamide therapy. Furthermore, CCL5 also enhances the expression of tumor programmed death-ligand 1 (PD-L1), resulting in immune escape. Mechanistically, CCL5 binds to the receptor CCR5 on prostate cancer cells and activates the AKT signaling pathway, leading to the upregulation of AR and PD-L1. The CCR5 antagonist maraviroc to inhibit the CAFs mediated CCL5 signaling pathway can effectively reduce the expression of AR and PD-L1, and improve the efficacy of enzalutamide. This study highlights a promising therapeutic approach targeting the CCL5-CCR5 signaling pathway to improve the effectiveness of enzalutamide.

8.
Signal Transduct Target Ther ; 9(1): 92, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637540

RESUMO

Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.


Assuntos
Reposicionamento de Medicamentos , Neoplasias , Humanos , Reposicionamento de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Resultado do Tratamento , Terapia Combinada , Microambiente Tumoral
9.
Clin Case Rep ; 12(4): e8635, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566979

RESUMO

Key Clinical Message: Bilateral synchronous double primary lung cancer (sDPLC) is a rare disease in clinics. This study analyzed the clinical data of a patient with bilateral sDPLC, aiming to improve medical workers' understanding of the disease and avoid missed diagnosis and misdiagnosis. Abstract: A 68-year-old male was admitted to the hospital with "intermittent cough and expectoration for two months." Enhanced chest computed tomography (CT) showed that the upper lobe of the left lung had a mass of high-density shadow, bronchial opening of the left lobe was thickened, lumen was narrow, and middle lobe of the right lung had a mass of high-density shadow. Bronchoscopy was performed to observe the microscopic characteristics of the lesions in the upper lobe of the left lung, and abnormal mucosa was biopsied. The pathological and immunohistochemical results confirmed that it was small cell lung cancer (SCLC) in the upper lobe of the left lung. Considering the occupation of the middle lobe of the right lung, CT-guided lung biopsy was performed, and the pathological and immunohistochemical results confirmed that it was moderately differentiated squamous cell carcinoma (SCC) in the middle lobe of the right lung. Clinicians should strengthen their understanding of sDPLC and focus on the imaging characteristics of chest CT and performance under bronchoscopy. Additionally, it is necessary to perform both CT-guided lung biopsy and bronchoscopy to obtain histopathological findings for the diagnosis.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38556382

RESUMO

BACKGROUND: Pancreatic cancer is a common malignancy with poor prognosis and limited treatment. Here we aimed to investigate the role of host chromosomal instability (CIN) and tumor microbiome in the prognosis of pancreatic cancer patients. METHODS: One hundred formalin-fixed paraffin-embedded (FFPE) pancreatic cancer samples were collected. DNA extracted from FFPE samples were analyzed by low-coverage whole-genome sequencing (WGS) via a customized bioinformatics workflow named ultrasensitive chromosomal aneuploidy detector. RESULTS: Samples are tested according to the procedure of ultrasensitive chromosomal aneuploidy detector (UCAD). We excluded 2 samples with failed quality control, 1 patient lost to follow-up and 6 dead in the perioperative period. The final 91 patients were admitted for the following analyses. Thirteen (14.3%) patients with higher CIN score had worse overall survival (OS) than those with lower CIN score. The top 20 microbes in pancreatic cancer samples included 15 species of bacteria and 5 species of viruses. Patients with high human herpesvirus (HHV)-7 and HHV-5 DNA reads exhibited worse OS. Furthermore, we classified 91 patients into 3 subtypes. Patients with higher CIN score (n =13) had the worst prognosis (median OS 6.9 mon); patients with lower CIN score but with HHV-7/5 DNA load (n = 24) had worse prognosis (median OS 10.6 mon); while patients with lower CIN score and HHV-7/5 DNA negative (n = 54) had the best prognosis (median OS 21.1 mon). CONCLUSIONS: High CIN and HHV-7/5 DNA load were associated with worse survival of pancreatic cancer. The novel molecular subtypes of pancreatic cancer based on CIN and microbiome had prognostic value.

11.
Phytomedicine ; 128: 155377, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503154

RESUMO

BACKGROUND: The existence of pancreatic cancer stem cells (PCSCs) results in limited survival benefits from current treatment options. There is a scarcity of effective agents for treating pancreatic cancer patients. Dehydroevodiamine (DeHE), a quinazoline alkaloid isolated from the traditional Chinese herb Evodiae fructus, exhibited potent inhibition of pancreatic ductal adenocarcinoma (PDAC) cell proliferation and tumor growth both in vitro and in vivo. METHODS: The cytotoxic effect of DeHE on PDAC cells was assessed using CCK-8 and colony formation assays. The antitumor efficacy of DeHE were appraised in human PANC-1 xenograft mouse model. Sphere formation assay and flow cytometry were employed to quantify the tumor stemness. RNA-Seq analysis, drug affinity responsive target stability assay (DARTS), and RNA interference transfection were conducted to elucidate potential signaling pathways. Western blotting and immunohistochemistry were utilized to assess protein expression levels. RESULTS: DeHE effectively inhibited PDAC cell proliferation and tumor growth in vitro and in vivo, and exhibited a better safety profile compared to the clinical drug gemcitabine (GEM). DeHE inhibited PCSCs, as evidenced by its suppression of self-renewal capabilities of PCSCs, reduced the proportion of ALDH+ cells and downregulated stemness-associated proteins (Nanog, Sox-2, and Oct-4) both in vitro and in vivo. Furthermore, there is potential involvement of DDIT3 and its downstream DDIT3/TRIB3/AKT/mTOR pathway in the suppression of stemness characteristics within DeHE-treated PDAC cells. Additionally, results from the DARTS assay indicated that DeHE interacts with DDIT3, safeguarding it against degradation mediated by pronase. Notably, the inhibitory capabilities of DeHE on PDAC cell proliferation and tumor stemness were partially restored by siDDIT3 or the AKT activator SC-79. CONCLUSION: In summary, our study has identified DeHE, a novel antitumor natural product, as an activator of DDIT3 with the ability to suppress the AKT/mTOR pathway. This pathway is intricately linked to tumor cell proliferation and stemness characteristics in PDAC. These findings suggest that DeHE holds potential as a promising candidate for the development of innovative anticancer therapeutics.


Assuntos
Proliferação de Células , Células-Tronco Neoplásicas , Neoplasias Pancreáticas , Fator de Transcrição CHOP , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Neoplasias Pancreáticas/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Camundongos , Quinazolinas/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Camundongos Nus , Evodia/química , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Camundongos Endogâmicos BALB C , Gencitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Int J Surg ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498388

RESUMO

BACKGROUND: The management of oligometastatic prostate cancer, defined by its few metastatic sites, poses distinct clinical dilemmas. Debates persist regarding the most effective treatment approach, with both cytoreductive surgery and radiotherapy being key contenders. The purpose of this research is to thoroughly evaluate and compare the effectiveness of these two treatments in managing patients with oligometastatic prostate cancer. METHODS: A comprehensive search of the literature was carried out to find pertinent publications that compared the results of radiation and cytoreductive surgery for oligometastatic prostate cancer.A meta-analysis was conducted in order to evaluate both the short- and long-term survival.Furthermore, utilizing institutional patient data, a retrospective cohort research was conducted to offer practical insights into the relative performances of the two treatment regimens. RESULTS: Five relevant studies' worth of data were included for this meta-analysis, which included 1425 patients with oligometastatic prostate cancer.The outcomes showed that, in comparison to radiation, cytoreductive surgery was linked to a substantially better Cancer Specific Survival (CSS) (hazard ratio [HR]: 0.70, 95% [CI]: 0.59-0.81, P<0.001) and Overall Survival (OS)(HR, 0.80; 95% [CI], 0.77-0.82; P < 0.01).The two therapy groups' Progression Free Survival (PFS) and Castration Resistant Prostate Cancer Free Survival(CRPCFS), however, did not differ significantly (HR: 0.56, 95% CI: 0.17-1.06; HR: 0.67, 95% CI: 0.26-1.02, respectively). Out of the 102 patients who were recruited in the retrospective cohort research, 36 had Cytoreductive Surgery(CRP), 36 had radiation therapy (primary lesion), and 30 had radiation therapy (metastatic lesion). The follow-up time was 46.3 months (18.6-60.0) on average. The enhanced OS in the CRP group (OS Interquartile Range (IQR): 45-60 months) in comparison to the radiation group (OS IQR: 39.0-59.0 months and 25.8-55.0 months respectively) was further supported by the cohort research. Furthermore, CRP had a better OS than both radiation (primary region) and radiotherapy (metastatic region), with the latter two therapeutic methods having similar OS. CONCLUSION: This meta-analysis and retrospective research provide valuable insights into the comparative efficacy of cytoreductive surgery and radiotherapy for oligometastatic prostate cancer. While short term survival(PFS,CRPCFS) were similar between the two groups, cytoreductive surgery exhibited superior CSS and OS.Adverse event rates were manageable in both modalities.These findings contribute to informed treatment decision-making for clinicians managing oligometastatic prostate cancer patients. Further prospective studies and randomized controlled trials are essential to corroborate these results and guide personalized therapeutic approaches for this distinct subset of patients.

13.
J Exp Clin Cancer Res ; 43(1): 67, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429845

RESUMO

BACKGROUND: Docetaxel resistance represents a significant obstacle in the treatment of prostate cancer. The intricate interplay between cytokine signalling pathways and transcriptional control mechanisms in cancer cells contributes to chemotherapeutic resistance, yet the underlying molecular determinants remain only partially understood. This study elucidated a novel resistance mechanism mediated by the autocrine interaction of interleukin-11 (IL-11) and its receptor interleukin-11 receptor subunit alpha(IL-11RA), culminating in activation of the JAK1/STAT4 signalling axis and subsequent transcriptional upregulation of the oncogene c-MYC. METHODS: Single-cell secretion profiling of prostate cancer organoid was analyzed to determine cytokine production profiles associated with docetaxel resistance.Analysis of the expression pattern of downstream receptor IL-11RA and enrichment of signal pathway to clarify the potential autocrine mechanism of IL-11.Next, chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) was performed to detect the nuclear localization and DNA-binding patterns of phosphorylated STAT4 (pSTAT4). Coimmunoprecipitation and reporter assays were utilized to assess interaction between pSTAT4 and the cotranscription factor CREB-binding protein (CBP) as well as their role in c-MYC transcriptional activity. RESULTS: Autocrine secretion of IL-11 was markedly increased in docetaxel-resistant prostate cancer cells. IL-11 stimulation resulted in robust activation of JAK1/STAT4 signalling. Upon activation, pSTAT4 translocated to the nucleus and associated with CBP at the c-MYC promoter region, amplifying its transcriptional activity. Inhibition of the IL-11/IL-11RA interaction or disruption of the JAK1/STAT4 pathway significantly reduced pSTAT4 nuclear entry and its binding to CBP, leading to downregulation of c-MYC expression and restoration of docetaxel sensitivity. CONCLUSION: Our findings identify an autocrine loop of IL-11/IL-11RA that confers docetaxel resistance through the JAK1/STAT4 pathway. The pSTAT4-CBP interaction serves as a critical enhancer of c-MYC transcriptional activity in prostate cancer cells. Targeting this signalling axis presents a potential therapeutic strategy to overcome docetaxel resistance in advanced prostate cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Interleucina-11 , Neoplasias da Próstata , Humanos , Masculino , Docetaxel/farmacologia , Regulação da Expressão Gênica , Interleucina-11/genética , Interleucina-11/metabolismo , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Fator de Transcrição STAT4/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
14.
Medicine (Baltimore) ; 103(9): e37200, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428848

RESUMO

RATIONALE: This article presents the case of a patient with recurrent chronic diarrhea and cachexia who was misdiagnosed, followed by a literature review to summarize the reasons for misdiagnosis of POEMS syndrome and the treatment strategies. PATIENT CONCERNS: The diagnosis and treatment of this patient suggest that with the improvement of M-protein detection levels, the diagnosis of patients with low M-protein levels, such as those with POEMS syndrome, has been greatly aided. DIAGNOSES: POEMS syndrome requires polyneuropathy and monoclonal plasma cell proliferation as mandatory diagnostic criteria. Therefore, patients presenting with polyneuropathy should routinely undergo M-protein testing and consider the possibility of POEMS syndrome. INTERVENTIONS: The patient, in this case, was treated primarily with relatively conservative immunomodulatory agents. OUTCOMES: During follow-up after treatment, the patient's diarrhea and malnutrition showed significant improvement. LESSONS SUBSECTIONS: POEMS syndrome has low clinical specificity and a high rate of misdiagnosis. However, once a definitive diagnosis is made, the treatment outcome is favorable.


Assuntos
Síndrome POEMS , Humanos , Síndrome POEMS/complicações , Síndrome POEMS/diagnóstico , Resultado do Tratamento , Erros de Diagnóstico , Diarreia/complicações
15.
J Orthop Surg Res ; 19(1): 177, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459553

RESUMO

BACKGROUND: Many KOA patients have not reached indications for surgery, thus we need to find effective non-surgical treatments. Acupuncture is thought to have the potential to modulate inflammation and cytokines in KOA through the immune system. However, the mechanisms have not been elucidated, and there is no network Meta-analysis of acupuncture on KOA animals. So we evaluate the effect and mechanism of acupuncture-related therapy in KOA animals. METHODS: A comprehensive search was conducted in multiple databases including PubMed, Web of Science, Embase, CBM, CNKI, WanFang, and VIP Database to identify relevant animal studies focusing on acupuncture therapy for KOA. The included studies were assessed for risk of bias using SYRCLE's Risk of Bias tool. Subsequently, pair-wise meta-analysis and network meta-analysis were performed using Stata 15.0 software, evaluating outcomes such as Lequesne index scale, Mankin score, IL-1ß, TNF-α, MMP3, and MMP13. RESULTS: 56 RCTs with 2394 animals were included. Meta-analysis showed that among the 6 outcomes, there were significant differences between acupuncture and model group; the overall results of network meta-analysis showed that the normal group or sham operation group performed the best, followed by the acupotomy, acupuncture, and medicine group, and the model group had the worst effect, and there were significant differences between 6 interventions. CONCLUSIONS: Acupuncture-related therapy can be a possible treatment for KOA. The mechanism involves many immune-inflammatory pathways, which may be mediated by DAMPs/TLR/NF-κB/MAPK,PI3K/Akt/NF-κB pathway, or IFN-γ/JAK-STAT pathway. It needs to be further confirmed by more high-quality animal experiments or meta-analysis. SYSTEMATIC REVIEW REGISTRATION: PROSPERO identifier: CRD42023377228.


Assuntos
Terapia por Acupuntura , Osteoartrite do Joelho , Animais , Humanos , Osteoartrite do Joelho/terapia , Metanálise em Rede , Janus Quinases , NF-kappa B , Fosfatidilinositol 3-Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Terapia por Acupuntura/métodos , Modelos Animais
16.
EBioMedicine ; 101: 105031, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401419

RESUMO

Metabolic-dysfunction-associated steatotic liver disease (MASLD) is becoming a leading cause of end-stage liver disease globally. Metabolic-dysfunction-associated steatohepatitis (MASH) represents a progressive inflammatory manifestation of MASLD. MASH underlies a versatile and dynamic inflammatory microenvironment, accompanied by aberrant metabolism and ongoing liver regeneration, establishing itself as a significant risk factor for hepatocellular carcinoma (HCC). The mechanisms underlying the escape and survival of malignant cells within the extensive inflammatory microenvironment of MASH remain elusive. Regulatory T cells (Tregs) play a crucial role in maintaining homeostasis and preventing excessive immune responses in the liver. Paradoxically, Tregs have been implicated in inhibiting tumour-promoting inflammation and facilitating the evasion of cancer cells. Recent studies have unveiled distinct behaviours of Tregs at different stages of MASLD, suggesting a dual role in the pathogenesis. In this review, we explore the fate of Tregs from MASLD to HCC, offering recent insights into potential targets for clinical intervention.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/etiologia , Linfócitos T Reguladores , Neoplasias Hepáticas/etiologia , Microambiente Tumoral
17.
Int Immunopharmacol ; 130: 111710, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38394888

RESUMO

Influenza virus is a kind of virus that poses several hazards of animal and human health. Therefore, it is important to develop an effective vaccine to prevent influenza. To this end we successfully packaged recombinant adenovirus rAd-NP-M2e-GFP expressing multiple copies of influenza virus conserved antigens NP and M2e and packaged empty vector adenovirus rAd-GFP. The effect of rAd-NP-M2e-GFP on the activation of dendritic cell (DC) in vitro and in vivo was detected by intranasal immunization. The results showed that rAd-NP-M2e-GFP promoted the activation of DC in vitro and in vivo. After the primary immunization and booster immunization of mice through the nasal immune way, the results showed that rAd-NP-M2e-GFP induced enhanced local mucosal-specific T cell responses, increased the content of SIgA in broncho alveolar lavage fluids (BALF) and triggered the differentiation of B cells in the germinal center. It is proved that rAd-NP-M2e-GFP can significantly elicit mucosal immunity and systemic immune response. In addition, rAd-NP-M2e-GFP could effectively protect mice after H1N1 influenza virus challenge. To lay the foundation and provide reference for further development of influenza virus mucosal vaccine in the future.


Assuntos
Vacinas contra Adenovirus , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Adenoviridae/genética , Imunização , Vacinas Sintéticas , Imunidade nas Mucosas , Camundongos Endogâmicos BALB C , Anticorpos Antivirais
18.
Cell Metab ; 36(4): 778-792.e10, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38378000

RESUMO

Here, we identify a subset of vascular pericytes, defined by expression of platelet-derived growth factor receptor beta (PDGFR-ß) and G-protein-coupled receptor 91 (GPR91), that promote tumorigenesis and tyrosine kinase inhibitors (TKIs) resistance by functioning as the primary methionine source for cancer stem cells (CSCs) in clear cell renal cell carcinoma (ccRCC). Tumor-cell-derived succinate binds to GPR91 on pericyte to activate autophagy for methionine production. CSCs use methionine to create stabilizing N6-methyladenosine in ATPase-family-AAA-domain-containing 2 (ATAD2) mRNA, and the resulting ATAD2 protein complexes with SRY-box transcription factor 9 to assemble super enhancers and thereby dictate its target genes that feature prominently in CSCs. Targeting PDGFR-ß+GPR91+ pericytes with specific GRP91 antagonists reduce intratumoral methionine level, eliminate CSCs, and enhance TKIs sensitivity. These results unraveled the mechanisms by which PDGFR-ß+GPR91+ pericytes provide supportive niche for CSCs and could be used to develop targets for treating ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Pericitos/metabolismo , Carcinoma de Células Renais/patologia , Metionina/metabolismo , Racemetionina/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Neoplasias Renais/patologia , Células-Tronco Neoplásicas/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ligação a DNA/metabolismo
19.
Int J Antimicrob Agents ; 63(5): 107124, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412930

RESUMO

For successful viral propagation within infected cells, the virus needs to overcome the cellular integrated stress response (ISR), triggered during viral infection, which, in turn, inhibits general protein translation. This paper reports a tactic employed by viruses to suppress the ISR by upregulating host cell polyribonucleotide nucleotidyltransferase 1 (PNPT1). The propagation of adenovirus, murine cytomegalovirus and hepatovirus within their respective host cells induces PNPT1 expression. Notably, when PNPT1 is knocked down, the propagation of all three viruses is prevented. Mechanistically, the inhibition of PNPT1 facilitates the relocation of mitochondrial double-stranded RNAs (mt-dsRNAs) to the cytoplasm, where they activate RNA-activated protein kinase (PKR). This activation leads to eukaryotic initiation factor 2α (eIF2α) phosphorylation, resulting in the suppression of translation. Furthermore, by scrutinizing the PNPT1 recognition element and screening 17,728 drugs and bioactive compounds approved by the US Food and Drug Administration, lanatoside C was identified as a potent PNPT1 inhibitor. This compound impedes the propagation of adenovirus, murine cytomegalovirus and hepatovirus, and suppresses production of the severe acute respiratory syndrome coronavirus-2 spike protein. These discoveries shed light on a novel strategy to impede pan-viral propagation by activating the host cell mt-dsRNA-PKR-eIF2α signalling axis.


Assuntos
eIF-2 Quinase , Humanos , Animais , eIF-2 Quinase/metabolismo , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/genética , Antivirais/farmacologia , Muromegalovirus/fisiologia , Muromegalovirus/efeitos dos fármacos , Camundongos , Fator de Iniciação 2 em Eucariotos/metabolismo , Replicação Viral/efeitos dos fármacos , RNA de Cadeia Dupla/genética , Adenoviridae/genética , Adenoviridae/efeitos dos fármacos , Fosforilação , SARS-CoV-2/efeitos dos fármacos
20.
Genes Cancer ; 15: 1-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323119

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of death from cancer worldwide but is often diagnosed at an advanced incurable stage. Yet, despite the urgent need for blood-based biomarkers for early detection, few studies capture ongoing biology to identify risk-stratifying biomarkers. We address this gap using the TGF-ß pathway because of its biological role in liver disease and cancer, established through rigorous animal models and human studies. Using machine learning methods with blood levels of 108 proteomic markers in the TGF-ß family, we found a pattern that differentiates HCC from non-HCC in a cohort of 216 patients with cirrhosis, which we refer to as TGF-ß based Protein Markers for Early Detection of HCC (TPEARLE) comprising 31 markers. Notably, 20 of the patients with cirrhosis alone presented an HCC-like pattern, suggesting that they may be a group with as yet undetected HCC or at high risk for developing HCC. In addition, we found two other biologically relevant markers, Myostatin and Pyruvate Kinase M2 (PKM2), which were significantly associated with HCC. We tested these for risk stratification of HCC in multivariable models adjusted for demographic and clinical variables, as well as batch and site. These markers reflect ongoing biology in the liver. They potentially indicate the presence of HCC early in its evolution and before it is manifest as a detectable lesion, thereby providing a set of markers that may be able to stratify risk for HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA