Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7264, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945658

RESUMO

Non-retroviral endogenous viral elements (nrEVEs) are widely dispersed throughout the genomes of eukaryotes. Although nrEVEs are known to be involved in host antiviral immunity, it remains an open question whether they can be domesticated as functional proteins to serve cellular innovations in arthropods. In this study, we found that endogenous toti-like viral elements (ToEVEs) are ubiquitously integrated into the genomes of three planthopper species, with highly variable distributions and polymorphism levels in planthopper populations. Three ToEVEs display exon‒intron structures and active transcription, suggesting that they might have been domesticated by planthoppers. CRISPR/Cas9 experiments revealed that one ToEVE in Nilaparvata lugens, NlToEVE14, has been co-opted by its host and plays essential roles in planthopper development and fecundity. Large-scale analysis of ToEVEs in arthropod genomes indicated that the number of arthropod nrEVEs is currently underestimated and that they may contribute to the functional diversity of arthropod genes.


Assuntos
Artrópodes , Hemípteros , Animais , Artrópodes/genética , Hemípteros/genética , Retroviridae
2.
Mol Biol Evol ; 40(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37804524

RESUMO

Herbivorous insects such as whiteflies, planthoppers, and aphids secrete abundant orphan proteins to facilitate feeding. Yet, how these genes are recruited and evolve to mediate plant-insect interaction remains unknown. In this study, we report a horizontal gene transfer (HGT) event from fungi to an ancestor of Aleyrodidae insects approximately 42 to 190 million years ago. BtFTSP1 is a salivary protein that is secreted into host plants during Bemisia tabaci feeding. It targets a defensive ferredoxin 1 in Nicotiana tabacum (NtFD1) and disrupts the NtFD1-NtFD1 interaction in plant cytosol, leading to the degradation of NtFD1 in a ubiquitin-dependent manner. Silencing BtFTSP1 has negative effects on B. tabaci feeding while overexpressing BtFTSP1 in N. tabacum benefits insects and rescues the adverse effect caused by NtFD1 overexpression. The association between BtFTSP1 and NtFD1 is newly evolved after HGT, with the homologous FTSP in its fungal donor failing to interact and destabilize NtFD1. Our study illustrates the important roles of horizontally transferred genes in plant-insect interactions and suggests the potential origin of orphan salivary genes.


Assuntos
Afídeos , Hemípteros , Animais , Ferredoxinas/metabolismo , Plantas/metabolismo , Hemípteros/genética , Nicotiana/genética , Nicotiana/metabolismo , Afídeos/metabolismo , Proteínas e Peptídeos Salivares/genética
3.
Genes (Basel) ; 14(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37628691

RESUMO

The whitefly Bemisia tabaci is one of the most destructive pests worldwide, and causes tremendous economic losses. Tobacco Nicotiana tabacum serves as a model organism for studying fundamental biological processes and is severely damaged by whiteflies. Hitherto, our knowledge of how tobacco perceives and defends itself against whiteflies has been scare. In this study, we analyze the gene expression patterns of tobacco in response to whitefly infestation. A total of 244 and 2417 differentially expressed genes (DEGs) were identified at 12 h and 24 h post whitefly infestation, respectively. Enrichment analysis demonstrates that whitefly infestation activates plant defense at both time points, with genes involved in plant pattern recognition, transcription factors, and hormonal regulation significantly upregulated. Notably, defense genes are more intensely upregulated at 24 h post infestation than at 12 h, indicating an increased immunity induced by whitefly infestation. In contrast, genes associated with energy metabolism, carbohydrate metabolism, ribosomes, and photosynthesis are suppressed, suggesting impaired plant development. Taken together, our study provides comprehensive insights into how plants respond to phloem-feeding insects, and offers a theoretical basis for better research on plant-insect interactions.


Assuntos
Hemípteros , Nicotiana , Animais , Nicotiana/genética , Hemípteros/genética , Transcriptoma/genética , Metabolismo Energético , Medo
4.
Curr Opin Insect Sci ; 59: 101106, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37625640

RESUMO

Planthoppers possess an impressive ability to exhibit phenotypic plasticity, which allows them to adjust their morphology for migration, overwintering, and adaptation to different environmental conditions. The wing and color polyphenism are the two most outward morphologies. Wing polyphenism serves as a classic illustration of a life history trade-off between reproduction and migration, while color polyphenism is potentially correlated with the insect development and immunity. In this review, we present the important contributions that link environment cues to wing and color polyphenism, and highlight recent advances in insulin/insulin-like growth factor signaling-forkhead transcription factor subgroup O (FoxO) pathway-mediated wing development and tyrosine-melanin pathway-mediated coloration. Further work, particularly in the identification of the genes that FoxO regulates and in the elucidation of the intracellular signals that link the stimuli to the tyrosine-melanin pathway, is required.

5.
Front Oncol ; 13: 1048485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274230

RESUMO

Purpose: To provide reference method for the treatment of thyroid follicular carcinoma by studing the clinical imaging, pathological features and multimodal treatment of a case of thyroid follicular carcinoma with bone metastasis. Methods: By identifying the case's clinical, imaging, pathological features of a case of thyroid follicular carcinoma with bone metastasis, reflecting on the case's diagnosis and treatment process, and referring to literature about the characteristics of thyroid follicular carcinoma, the study aims to provide reference for the treatment of this kind of disease. Result: A 67-year-old male patient was admitted to the hospital with clinical symptoms of left pelvic pain. The biopsy pathology showed well-differentiated thyroid tissue. Considering his medical history, conclusion of thyroid follicular carcinoma metastasis could be made.The patient was stable and no tumor progression was observed after a combination of therapies including 131I and topical and targeted agents. Conclusions: Thyroid follicular carcinoma are prone to bone metastasis, and bone metastasis is the first symptom in some cases. Clinical imaging and pathology are needed for correct diagnosis, and a successful treatment requires a combination of multiple approaches including 131I, which is a Radioactive Iodine Therapy(RAI), local therapy and targeted drug therapy.

6.
PLoS Pathog ; 19(3): e1011266, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928081

RESUMO

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved signaling pathway that can regulate various biological processes. However, the role of JAK-STAT pathway in the persistent viral infection in insect vectors has rarely been investigated. Here, using a system that comprised two different plant viruses, Rice stripe virus (RSV) and Rice black-streaked dwarf virus (RBSDV), as well as their insect vector small brown planthopper, we elucidated the regulatory mechanism of JAK-STAT pathway in persistent viral infection. Both RSV and RBSDV infection activated the JAK-STAT pathway and promoted the accumulation of suppressor of cytokine signaling 5 (SOCS5), an E3 ubiquitin ligase regulated by the transcription factor STAT5B. Interestingly, the virus-induced SOCS5 directly interacted with the anti-apoptotic B-cell lymphoma-2 (BCL2) to accelerate the BCL2 degradation through the 26S proteasome pathway. As a result, the activation of apoptosis facilitated persistent viral infection in their vector. Furthermore, STAT5B activation promoted virus amplification, whereas STAT5B suppression inhibited apoptosis and reduced virus accumulation. In summary, our results reveal that virus-induced JAK-STAT pathway regulates apoptosis to promote viral infection, and uncover a new regulatory mechanism of the JAK-STAT pathway in the persistent plant virus transmission by arthropod vectors.


Assuntos
Tenuivirus , Viroses , Animais , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Tenuivirus/metabolismo , Insetos Vetores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
7.
Arch Virol ; 167(10): 2079-2083, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35751691

RESUMO

The spotted lanternfly (Lycorma delicatula) is an invasive pest that causes serious economic losses in fruit and wood production. Here, we identified a novel iflavirus named "Lycorma delicatula iflavirus 1" (LDIV1), in a spotted lanternfly. The full genome sequence of LDIV1 is 10,222 nt in length and encodes a polyprotein containing a picornavirus capsid-protein-domain-like domain, a cricket paralysis virus capsid superfamily domain, an RNA helicase domain, a peptidase C3 superfamily domain, and an RNA-dependent RNA polymerase (RdRp) domain. LDIV1 replicates in the host insect and activates small interfering RNA (siRNA)-based host antiviral immunity. Phylogenetic analysis demonstrated that LDIV1 is most closely related to an unspecified member of the order Picornavirales, with 61.7% sequence identity in the RdRp region and 57.6% sequence identity in the coat protein region, and thus meets the demarcation criteria for new species in the genus Iflavirus. To the best of our knowledge, LDIV1 is the first virus discovered in L. delicatula.


Assuntos
Hemípteros , Vírus de RNA , Animais , Filogenia , RNA Polimerase Dependente de RNA , Análise de Sequência de DNA
8.
Biology (Basel) ; 10(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34439985

RESUMO

The bean bug, Riptortus pedestris (Fabricius), is one of the most important soybean pests. It damages soybean leaves and pods with its piercing-sucking mouthparts, causing staygreen-like syndromes in the infested crops. During the feeding process, R. pedestris secretes a mixture of salivary proteins, which play critical roles in the insect-plant interactions and may be responsible for staygreen-like syndromes. The present study aimed to identify the major salivary proteins in R. pedestris saliva by transcriptomic and proteomic approaches, and to screen the proteins that potentially induced plant defense responses. Altogether, 136 salivary proteins were identified, and a majority of them were involved in hydrolase and binding. Additionally, R. pedestris saliva contained abundant bug-specific proteins with unknown function. Transient expression of salivary proteins in Nicotiana benthamiana leaves identified that RpSP10.3, RpSP13.4, RpSP13.8, RpSP17.8, and RpSP10.2 were capable of inducing cell death, reactive oxygen species (ROS) burst, and hormone signal changes, indicating the potential roles of these proteins in eliciting plant defenses. Our results will shed more light on the molecular mechanisms underlying the plant-insect interactions and are useful for pest management.

9.
New Phytol ; 224(2): 860-874, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30883796

RESUMO

Extracellular DNA, released by damaged plant cells, acts as a damage-associated molecular pattern (DAMP). We demonstrated previously that the small brown planthopper (Laodelphax striatellus, SBPH) secreted DNase II when feeding on artificial diets. However, the function of DNase II in insect feeding remained elusive. The influences of DNase II on SBPHs and rice plants were investigated by suppressing expression of DNase II or by application of heterogeneously expressed DNase II. We demonstrated that DNase II is mainly expressed in the salivary gland and is responsible for DNA-degrading activity of saliva. Knocking down the expression of DNase II resulted in decreased performance of SBPH reared on rice plants. The dsDNase II-treated SBPH did not influenced jasmonic acid (JA), salicylic acid (SA), ethylene (ET) pathways, but elicited a higher level of H2 O2 and callose accumulation. Application of heterogeneously expressed DNase II in DNase II-deficient saliva slightly reduced the wound-induced defence response. We propose a DNase II-based invading model for SBPH feeding on host plants, and provide a potential target for pest management.


Assuntos
Endodesoxirribonucleases/metabolismo , Hemípteros/enzimologia , Nicotiana/metabolismo , Oryza/metabolismo , Sequência de Aminoácidos , Animais , Líquidos Corporais/química , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Regulação Enzimológica da Expressão Gênica , Glucanos/metabolismo , Peróxido de Hidrogênio/metabolismo , Interferência de RNA , Nicotiana/efeitos dos fármacos
10.
Virus Res ; 229: 48-56, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28034779

RESUMO

Rice ragged stunt virus (RRSV; Reoviridae) is exclusively transmitted by the brown planthopper Nilaparvata lugens in a persistent-propagative manner. It is understood that RNA viral proliferation is associated with the intracellular membranes of the insect host cells. However, the molecular mechanisms of the interaction between the RRSV proliferation and the intracellular membranes remain essentially unknown. It will be of great interest to determine whether RRSV protein(s) directly interact with intracellular membrane components of its host cells. In this study, we identified a RRSV nonstructural protein Pns10 interacting with a host oligomycin-sensitivity conferral protein (OSCP) using yeast two-hybrid system. The interaction between RRSV Pns10 and N. lugens OSCP was verified by a glutathione S-transferase pull-down assay. Confocal miscopy revealed colocalization of these two proteins in the cytoplasm of the salivary gland cells during the viral infection. The virions were further detected in the mitochondria under confocal miscopy and transmission electron microscopy combined with western blotting assay. This is the first observation that RRSV protein has a direct link with mitochondria. Suppressing OSCP gene expression by RNA interference notably decreased the viral loads in RRSV-infected insects. These findings revealed novel aspects of a viral protein in targeting the host mitochondrial membrane and provide insights concerning the mitochondrial membrane protein-based virus proliferation mode in the insect vector.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Transporte/genética , Hemípteros/virologia , Proteínas de Insetos/genética , Proteínas de Membrana/genética , Mitocôndrias/virologia , Oryza/virologia , Reoviridae/genética , Proteínas não Estruturais Virais/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Hemípteros/classificação , Hemípteros/metabolismo , Hemípteros/ultraestrutura , Proteínas de Insetos/metabolismo , Insetos Vetores/metabolismo , Insetos Vetores/ultraestrutura , Insetos Vetores/virologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras , Oryza/parasitologia , Filogenia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Reoviridae/crescimento & desenvolvimento , Reoviridae/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/ultraestrutura , Glândulas Salivares/virologia , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido , Carga Viral , Proteínas não Estruturais Virais/metabolismo , Vírion/genética , Vírion/crescimento & desenvolvimento , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA