Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Cell ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38744281

RESUMO

Alterations in extracellular matrix (ECM) architecture and stiffness represent hallmarks of cancer. Whether the biomechanical property of ECM impacts the functionality of tumor-reactive CD8+ T cells remains largely unknown. Here, we reveal that the transcription factor (TF) Osr2 integrates biomechanical signaling and facilitates the terminal exhaustion of tumor-reactive CD8+ T cells. Osr2 expression is selectively induced in the terminally exhausted tumor-specific CD8+ T cell subset by coupled T cell receptor (TCR) signaling and biomechanical stress mediated by the Piezo1/calcium/CREB axis. Consistently, depletion of Osr2 alleviates the exhaustion of tumor-specific CD8+ T cells or CAR-T cells, whereas forced Osr2 expression aggravates their exhaustion in solid tumor models. Mechanistically, Osr2 recruits HDAC3 to rewire the epigenetic program for suppressing cytotoxic gene expression and promoting CD8+ T cell exhaustion. Thus, our results unravel Osr2 functions as a biomechanical checkpoint to exacerbate CD8+ T cell exhaustion and could be targeted to potentiate cancer immunotherapy.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38556382

RESUMO

BACKGROUND: Pancreatic cancer is a common malignancy with poor prognosis and limited treatment. Here we aimed to investigate the role of host chromosomal instability (CIN) and tumor microbiome in the prognosis of pancreatic cancer patients. METHODS: One hundred formalin-fixed paraffin-embedded (FFPE) pancreatic cancer samples were collected. DNA extracted from FFPE samples were analyzed by low-coverage whole-genome sequencing (WGS) via a customized bioinformatics workflow named ultrasensitive chromosomal aneuploidy detector. RESULTS: Samples are tested according to the procedure of ultrasensitive chromosomal aneuploidy detector (UCAD). We excluded 2 samples with failed quality control, 1 patient lost to follow-up and 6 dead in the perioperative period. The final 91 patients were admitted for the following analyses. Thirteen (14.3%) patients with higher CIN score had worse overall survival (OS) than those with lower CIN score. The top 20 microbes in pancreatic cancer samples included 15 species of bacteria and 5 species of viruses. Patients with high human herpesvirus (HHV)-7 and HHV-5 DNA reads exhibited worse OS. Furthermore, we classified 91 patients into 3 subtypes. Patients with higher CIN score (n =13) had the worst prognosis (median OS 6.9 mon); patients with lower CIN score but with HHV-7/5 DNA load (n = 24) had worse prognosis (median OS 10.6 mon); while patients with lower CIN score and HHV-7/5 DNA negative (n = 54) had the best prognosis (median OS 21.1 mon). CONCLUSIONS: High CIN and HHV-7/5 DNA load were associated with worse survival of pancreatic cancer. The novel molecular subtypes of pancreatic cancer based on CIN and microbiome had prognostic value.

3.
Int J Surg ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502860

RESUMO

BACKGROUND: Early allograft dysfunction (EAD) is a common complication after liver transplantation (LT) and is associated with poor prognosis. Graft itself plays a major role in the development of EAD. We aimed to reveal the EAD-specific molecular profiles to assess graft quality and establish EAD predictive models. METHODS: A total of 223 patients who underwent LT were enrolled and divided into training (n=73) and validation (n=150) sets. In the training set, proteomics was performed on graft biopsies, together with metabolomics on paired perfusates. Differential expression, enrichment analysis, and protein-protein interaction network were used to identify the key molecules and pathways involved. EAD predictive models were constructed using machine learning and verified in the validation set. RESULTS: A total of 335 proteins were differentially expressed between the EAD and non-EAD groups. These proteins were significantly enriched in triglyceride and glycerophospholipid metabolism, neutrophil degranulation, and the MET-related signaling pathway. The top 12 graft proteins involved in the aforementioned processes were identified, including GPAT1, LPIN3, TGFB1, CD59, and SOS1. Moreover, downstream metabolic products, such as lactate dehydrogenase, interleukin-8, triglycerides, and the phosphatidylcholine/phosphorylethanolamine ratio in the paired perfusate displayed a close relationship with the graft proteins. To predict the occurrence of EAD, an integrated model using perfusate metabolic products and clinical parameters showed areas under the curve of 0.915 and 0.833 for the training and validation sets, respectively. It displayed superior predictive efficacy than that of currently existing models, including donor risk index and D-MELD scores. CONCLUSIONS: We identified novel biomarkers in both grafts and perfusates that could be used to assess graft quality and provide new insights into the etiology of EAD. Herein, we also offer a valid tool for the early prediction of EAD.

4.
Transl Oncol ; 41: 101874, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262113

RESUMO

Monocyte/macrophages constitute a significant population of tumor-infiltrating immune cells and play a crucial role in tumor growth, invasion, and metastasis. B7-H3, has immune regulatory functions, however, it is unclear whether B7-H3 expressed on monocyte/macrophages plays a significance role in tumor progression. We found B7-H3 was high-expressed on monocyte/macrophages in tumor microenvironment compared with adjacent tissues in lung cancer, and its expression level was positively correlated with the number of monocyte/macrophages. Furthermore, the expression of B7-H3 was related to clinical stage and lymph node metastasis. Moreover, miR-29a-3p negatively regulated B7-H3, and the expression of B7-H3 on THP-1-derived macrophages was regulated by secreting exosomes containing miR-29a-3p. In addition, knockdown of B7-H3 promoted macrophage apoptosis under hypoxia. Mechanistically, B7-H3 enhanced the antiapoptotic ability of macrophage by up-regulating HIF-1ɑ via activating NF-κB. Taken together, these results imply that B7-H3 as a therapeutic target could hold promise for enhancing anti-tumor immune responses in individuals diagnosed with lung cancer.

5.
Ecotoxicol Environ Saf ; 271: 115885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194857

RESUMO

Tobacco plants (Nicotiana tabacum L.) exhibit considerable potential for phytoremediation of soil cadmium (Cd) pollutants, owing to their substantial biomass and efficient metal accumulation capabilities. The reduction of Cd accumulation in tobacco holds promise for minimizing Cd intake in individuals exposed to cigar smoking. NRAMP transporters are pivotal in the processes of Cd accumulation and resistance in plants; however, limited research has explored the functions of NRAMPs in tobacco plants. In this investigation, we focused on NtNRAMP6c, one of the three homologs of NRAMP6 in tobacco. We observed a robust induction of NtNRAMP6c expression in response to both Cd toxicity and iron (Fe) deficiency, with the highest expression levels detected in the roots. Subsequent subcellular localization and heterologous expression analyses disclosed that NtNRAMP6c functions as a plasma membrane-localized Cd transporter. Moreover, its overexpression significantly heightened the sensitivity of yeast cells to Cd toxicity. Through CRISPR-Cas9-mediated knockout of NtNRAMP6c, we achieved a reduction in Cd accumulation and an enhancement in Cd resistance in tobacco plants. Comparative transcriptomic analysis unveiled substantial alterations in the transcriptional profiles of genes associated with metal ion transport, photosynthesis, and macromolecule catabolism upon NtNRAMP6c knockout. Furthermore, our study employed plant metabolomics and rhizosphere metagenomics to demonstrate that NtNRAMP6c knockout led to changes in phytohormone homeostasis, as well as shifts in the composition and abundance of microbial communities. These findings bear significant biological implications for the utilization of tobacco in phytoremediation strategies targeting Cd pollutants in contaminated soils, and concurrently, in mitigating Cd accumulation in tobacco production destined for cigar consumption.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Humanos , Cádmio/metabolismo , Nicotiana/genética , Ferro/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Poluentes Ambientais/análise , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
6.
Curr Stem Cell Res Ther ; 19(3): 334-350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36892029

RESUMO

Senescence refers to the irreversible state in which cells enter cell cycle arrest due to internal or external stimuli. The accumulation of senescent cells can lead to many age-related diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancers. MicroRNAs are short non-coding RNAs that bind to target mRNA to regulate gene expression after transcription and play an important regulatory role in the aging process. From nematodes to humans, a variety of miRNAs have been confirmed to alter and affect the aging process. Studying the regulatory mechanisms of miRNAs in aging can further deepen our understanding of cell and body aging and provide a new perspective for the diagnosis and treatment of aging-related diseases. In this review, we illustrate the current research status of miRNAs in aging and discuss the possible prospects for clinical applications of targeting miRNAs in senile diseases.


Assuntos
MicroRNAs , Doenças Neurodegenerativas , Humanos , MicroRNAs/metabolismo , Senescência Celular/genética , Envelhecimento/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia
7.
Emerg Microbes Infect ; 13(1): 2281355, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37933089

RESUMO

Vaccination strategies that can induce a broad spectrum immune response are important to enhance protection against SARS-CoV-2 variants. We conducted a randomized, double-blind and parallel controlled trial to evaluate the safety and immunogenicity of the bivalent (5×1010viral particles) and B.1.1.529 variant (5×1010viral particles) adenovirus type-5 (Ad5) vectored COVID-19 vaccines administrated via inhalation. 451 eligible subjects aged 18 years and older who had been vaccinated with three doses inactivated COVID-19 vaccines were randomly assigned to inhale one dose of either B.1.1.529 variant Ad5 vectored COVID-19 vaccine (Ad5-nCoVO-IH group, N=150), bivalent Ad5 vectored COVID-19 vaccine (Ad5-nCoV/O-IH group, N=151), or Ad5 vectored COVID-19 vaccine (5×1010viral particles; Ad5-nCoV-IH group, N=150). Adverse reactions reported by 37 (24.67%) participants in the Ad5-nCoVO-IH group, 28 (18.54%) in the Ad5-nCoV/O-IH group, and 26 (17.33%) in the Ad5-nCoV-IH group with mainly mild to moderate dry mouth, oropharyngeal pain, headache, myalgia, cough, fever and fatigue. No serious adverse events related to the vaccine were reported. Investigational vaccines were immunogenic, with significant difference in the GMTs of neutralizing antibodies against Omicron BA.1 between Ad5-nCoV/O-IH (43.70) and Ad5-nCoV-IH (29.25) at 28 days after vaccination (P=0.0238). The seroconversion rates of neutralizing antibodies against BA.1 in Ad5-nCoVO-IH, Ad5-nCoV/O-IH, and Ad5-nCoV-IH groups were 56.00%, 59.60% and 48.67% with no significant difference among the groups. Overall, the investigational vaccines were demonstrated to be safe and well tolerated in adults, and was highly effective in inducing mucosal immunities in addition to humoral and cellular immune responses defending against SARS-CoV-2 variants.Trial registration: Chictr.org identifier: ChiCTR2200063996.


Assuntos
COVID-19 , Vacinas , Adulto , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , Vacinas Combinadas , Adenoviridae/genética , Anticorpos Neutralizantes , Imunogenicidade da Vacina , Anticorpos Antivirais
8.
Plant Sci ; 339: 111961, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103697

RESUMO

LYSINE HISTIDINE TRANSPORTER1 (LHT1) is a crucial broad-specificity and high-affinity amino acid transporter affecting the uptake of nitrogen and probably the tolerance to abiotic stress in plants. However, little is known about the phenotypic functions of LHT1 in plant growth and development and abiotic stress tolerance. In this study, we identified the NtLHT1 gene from the tobacco variety Honghuadajinyuan (HD) and determined its important roles in leaf morphological development and plant resistance to abiotic stress. Comprehensive functional analyses using knockout and overexpression transgenic lines (ntlht1 and OE) revealed overexpression of NtLHT1 accelerated leave senescence and increased plant height, leaf number and plant tolerance under cold, salt and drought stresses. In addition, NtLHT1 overexpression significantly decreased the leaf elongation of HD, causing the leaves to change from a long-elliptical shape to an elliptical shape. However silencing NtLHT1 decreased the seed germination rate under NaCl and PEG stresses. Moreover, NtLHT1 significantly affected the contents of various amino acids, such as the neutral, acidic, non-polar and aromatic amino acids, ethylene precursor (ACC), GA3 and IAA in tobacco. These results suggested that the amino acid and ethylene precursor ACC transport activities of NtLHT1 provide fine regulatory function for plant growth and development and plant tolerance to abiotic stress.


Assuntos
Etilenos , Estresse Fisiológico , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Etilenos/metabolismo , Estresse Fisiológico/genética , Cloreto de Sódio/metabolismo , Aminoácidos/metabolismo , Nicotiana/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas
9.
Food Chem ; 440: 137825, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159321

RESUMO

The juice exudation of aquatic products oozes out during storage can influence storage quality. Herein, a novel basil essential oil liposome unidirectional water-conducting sustained-release preservation pads (BEOL/UCSP) were prepared with nylon mesh as water-conducting layer, basil essential oil liposome (BEOL) as sustained-release preservation layer, and diatomite and absorbent-cotton as water-absorbing layer. EL/UCSP, ß-CL/UCSP, and BEO/UCSP were prepared after BEOL was replaced by eugenol liposome, ß-caryophyllene liposome, and BEO. BEOL are microspheres with bilayer structure, had good storage stability, centrifugal stability, thermal stability, embedding capacity, sustained-release, and oxidation resistance, and the main components of preservatives had a synergistic effect on antibacterial properties. The pads without preservative can initially slow down quality deterioration. BEOL/UCSP can directionally absorb exudate and realize long-term sustained-release of preservative, has excellent antibacterial and antioxidant effect, and extended shelf life of Lateolabrax japonicus fillets from 6.0 days to 12.8 days. The BEOL/UCSP can provide technical theoretical support for preservation materials.


Assuntos
Ocimum basilicum , Óleos Voláteis , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Conservação de Alimentos , Ocimum basilicum/química , Lipossomos , Preparações de Ação Retardada , Peixes , Antibacterianos
10.
Planta ; 259(2): 31, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150094

RESUMO

Chlorogenic acid (CGA) and flavonoids are important secondary metabolites, which modulate plant growth and development, and contribute to plant resistance to various environmental stresses. ERF4 has been shown to be a repressor of anthocyanin accumulation in grape, but its full roles in regulating the biosynthesis of other phenylpropanoid compounds still needs to be further studied. In the present study, two NtERF4 genes were identified from N. tabacum genome. The expression level of NtERF4a was higher than that of NtERF4b in all the tobacco tissues examined. Over-expression of NtERF4a significantly promoted the accumulation of CGA and flavonoids in tobacco leaves, while silencing of NtERF4a significantly repressed the biosynthesis of CGA and flavonoids. RNA-seq analysis of NtERF4a-OE and WT plants revealed 8 phenylpropanoids-related differentially expressed genes (DEGs), including 4 NtPAL genes that encode key enzymes in the phenylpropanoid pathway. Activation of NtERF4a-GR fusion protein in tobacco significantly induced the transcription of NtPAL1 and NtPAL2 in the presence of protein synthesis inhibitor. Chromatin immunoprecipitation and Dual-Luc assays further indicated that NtERF4a could bind to the GCC box presented in the promoters of NtPAL1 and NtPAL2, thereby activating their transcription. Moreover, ectopic expression of NtERF4a induced the transcription of NtGSK1, NtMYC2, and NtJAZ3 genes, and enhanced the resistance of tobacco seedlings to salt and drought stresses, indicating multiple roles of NtERF4a in plants. Our findings revealed new roles of NtERF4a in modulating the accumulation of phenylpropanoid compounds in tobacco, and provided a putative target for improving phenylpropanoids synthesis and stress resistance in plants.


Assuntos
Flavonoides , Nicotiana , Nicotiana/genética , Ácido Clorogênico , Metabolismo Secundário , Antocianinas
11.
Clin Transl Med ; 13(11): e1493, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38009315

RESUMO

BACKGROUND: Biopsies obtained from primary oesophageal squamous cell carcinoma (ESCC) guide diagnosis and treatment. However, spatial intra-tumoral heterogeneity (ITH) influences biopsy-derived information and patient responsiveness to therapy. Here, we aimed to elucidate the spatial ITH of ESCC and matched lymph node metastasis (LNmet ). METHODS: Primary tumour superficial (PTsup ), deep (PTdeep ) and LNmet subregions of patients with locally advanced resectable ESCC were evaluated using whole-exome sequencing (WES), whole-transcriptome sequencing and spatially resolved digital spatial profiling (DSP). To validate the findings, immunohistochemistry was conducted and a single-cell transcriptomic dataset was analysed. RESULTS: WES revealed 15.72%, 5.02% and 32.00% unique mutations in PTsup , PTdeep and LNmet , respectively. Copy number alterations and phylogenetic trees showed spatial ITH among subregions both within and among patients. Driver mutations had a mixed intra-tumoral clonal status among subregions. Transcriptome data showed distinct differentially expressed genes among subregions. LNmet exhibited elevated expression of immunomodulatory genes and enriched immune cells, particularly when compared with PTsup (all P < .05). DSP revealed orthogonal support of bulk transcriptome results, with differences in protein and immune cell abundance between subregions in a spatial context. The integrative analysis of multi-omics data revealed complex heterogeneity in mRNA/protein levels and immune cell abundance within each subregion. CONCLUSIONS: This study comprehensively characterised spatial ITH in ESCC, and the findings highlight the clinical significance of unbiased molecular classification based on multi-omics data and their potential to improve the understanding and management of ESCC. The current practices for tissue sampling are insufficient for guiding precision medicine for ESCC, and routine profiling of PTdeep and/or LNmet should be systematically performed to obtain a more comprehensive understanding of ESCC and better inform treatment decisions.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Multiômica , Filogenia , Neoplasias Esofágicas/patologia , Mutação/genética
12.
Heliyon ; 9(11): e21342, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954302

RESUMO

Background: Long noncoding RNA (lncRNA) is widely acknowledged for its crucial role in the biological processes of various human cancers. MCF2L antisense RNA 1 (MCF2L-AS1) is a newly identified lncRNA, which remains unexplored in the context of cancer. Methods: MCF2L-AS1 expression was examined using qRT-PCR analysis. The impact of MCF2L-AS1 on LUAD cell growth was assessed through CCK-8, colony formation, EdU, caspase-3 activity, TUNEL, Western blot, and transwell assays. The interaction between miR-874-3p and MCF2L-AS1 or STAT3 was confirmed by RIP, luciferase reporter, and RNA pull-down assays. Results: Our study demonstrated the overexpression of MCF2L-AS1 in LUAD cells. Functionally, the silencing of MCF2L-AS1 hindered cell proliferation, migration, and invasion, while promoting cell apoptosis. Notably, the depletion of MCF2L-AS1 was associated with decreased cisplatin resistance. Mechanistically, MCF2L-AS1 was identified as an upstream gene of miR-874-3p, negatively regulating its expression. Following this, STAT3, the downstream target of miR-874-3p, was identified. Additionally, the expression of STAT3 was inversely related to miR-874-3p and positively regulated by MCF2L-AS1. A restoration assay suggested that MCF2L-AS1 promoted LUAD cell growth by sponging miR-874-3p and modulating STAT3 expression. Intriguingly, STAT3 was subsequently confirmed as a transcription factor that binds to the MCF2L-AS1 promoter, thereby enhancing its transcription. Conclusions: The MCF2L-AS1/miR-874-3p/STAT3 feedback loop plays a significant role in LUAD cell growth and cisplatin resistance.

13.
Front Plant Sci ; 14: 1216702, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868314

RESUMO

Background: Nicotiana tabacum is an important economic crop, which is widely planted in the world. Lignin is very important for maintaining the physiological and stress-resistant functions of tobacco. However, higher lignin content will produce lignin gas, which is not conducive to the formation of tobacco quality. To date, how to precisely fine-tune lignin content or composition remains unclear. Results: Here, we annotated and screened 14 CCoAOMTs in Nicotiana tabacum and obtained homozygous double mutants of CCoAOMT6 and CCoAOMT6L through CRSIPR/Cas9 technology. The phenotype showed that the double mutants have better growth than the wild type whereas the S/G ratio increased and the total sugar decreased. Resistance against the pathogen test and the extract inhibition test showed that the transgenic tobacco has stronger resistance to tobacco bacterial wilt and brown spot disease, which are infected by Ralstonia solanacearum and Alternaria alternata, respectively. The combined analysis of metabolome and transcriptome in the leaves and roots suggested that the changes of phenylpropane and terpene metabolism are mainly responsible for these phenotypes. Furthermore, the molecular docking indicated that the upregulated metabolites, such as soyasaponin Bb, improve the disease resistance due to highly stable binding with tyrosyl-tRNA synthetase targets in Ralstonia solanacearum and Alternaria alternata. Conclusions: CAFFEOYL-COA 3-O-METHYLTRANSFERASE 6/6L can regulate the S/G ratio of lignin monomers and may affect tobacco bacterial wilt and brown spot disease resistance by disturbing phenylpropane and terpene metabolism in leaves and roots of Nicotiana tabacum, such as soyasaponin Bb.

14.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843276

RESUMO

The loss of contact inhibition is a key step during carcinogenesis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is an important regulator of cell growth in a cell density-dependent manner. However, how Hippo signaling senses cell density in this context remains elusive. Here, we report that high cell density induced the phosphorylation of spectrin α chain, nonerythrocytic 1 (SPTAN1), a plasma membrane-stabilizing protein, to recruit NUMB endocytic adaptor protein isoforms 1 and 2 (NUMB1/2), which further sequestered microtubule affinity-regulating kinases (MARKs) in the plasma membrane and rendered them inaccessible for phosphorylation and inhibition of the Hippo kinases sterile 20-like kinases MST1 and MST2 (MST1/2). WW45 interaction with MST1/2 was thereby enhanced, resulting in the activation of Hippo signaling to block YAP activity for cell contact inhibition. Importantly, low cell density led to SPTAN1 dephosphorylation and NUMB cytoplasmic location, along with MST1/2 inhibition and, consequently, YAP activation. Moreover, double KO of NUMB and WW45 in the liver led to appreciable organ enlargement and rapid tumorigenesis. Interestingly, NUMB isoforms 3 and 4, which have a truncated phosphotyrosine-binding (PTB) domain and are thus unable to interact with phosphorylated SPTAN1 and activate MST1/2, were selectively upregulated in liver cancer, which correlated with YAP activation. We have thus revealed a SPTAN1/NUMB1/2 axis that acts as a cell density sensor to restrain cell growth and oncogenesis by coupling external cell-cell contact signals to intracellular Hippo signaling.


Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Espectrina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Sinalização YAP , Fatores de Transcrição/metabolismo , Carcinogênese/genética
15.
Mol Cell Probes ; 72: 101939, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879503

RESUMO

Esophageal squamous cell carcinoma (ESCC) consistently ranks as one of the most challenging variants of squamous cell carcinomas, primarily due to the lack of effective early detection strategies. We herein aimed to elucidate the underlying mechanisms and biological role associated with A-kinase anchoring protein 12 (AKAP12) in the context of ESCC. Bioinformatic analysis had revealed significantly lower expression level of AKAP12 in ESCC tissue samples than in their non-cancerous counterparts. To gain deeper insights into the potential role of AKAP12 in the progression of ESCC, we conducted a single-gene set enrichment analysis of AKAP12 on ESCC datasets. Our findings suggested that AKAP12 exhibits functions inhibiting cell cycle progression, tumor proliferation, and epithelial-mesenchymal transition. To further validate our findings, we subjected ESCC cell lines to AKAP12 overexpression using CRISPR/Cas9-SAM. In vitro analyses demonstrated that increased expression of AKAP12 significantly reduced cell proliferation, migration, and cell cycle progression. Simultaneously, genes associated with this biological role undergo corresponding regulatory shifts. These observations provided valuable insights into the biological role played by AKAP12 in ESCC progression. In summary, AKAP12 shows promise as a new potential biomarker for early ESCC diagnosis, offering potential advantages for subsequent therapeutic intervention and disease management.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/patologia , Transdução de Sinais/genética , Ciclo Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
16.
J Infect ; 87(6): 556-570, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898410

RESUMO

BACKGROUND: The novel coronavirus pneumonia (COVID-19) is an infectious disease caused by the infection of a novel coronavirus known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has resulted in millions of deaths. We aimed to evaluate the safety and immunogenicity of the COVID-19 mRNA vaccine (CS-2034, CanSino, Shanghai, China) in adults without COVID-19 infection from China. METHOD: This is a multicenter Phase I clinical trial with a randomized, double-blinded, dose-exploration, placebo-controlled design. The trial recruited 40 seronegative participants aged 18-59 years who had neither received any COVID-19 vaccine nor been infected before. They were divided into a low-dose group (administered with either the CS-2034 vaccine containing 30 µg of mRNA or a placebo of 0.3 ml type 5 adenovirus vector) and a high-dose group (administered with either the CS-2034 vaccine containing 50 µg of mRNA or a placebo of 0.5 ml type 5 adenovirus vector). Participants were randomly assigned in a 3:1 ratio to receive either the mRNA vaccine or a placebo on days 0 and 21 according to a two-dose immunization schedule. The first six participants in each dosage group were assigned as sentinel subjects. Participants were sequentially enrolled in a dose-escalation manner from low to high dose and from sentinel to non-sentinel subjects. Blood samples were collected from all participants on the day before the first dose (Day 0), the day before the second dose (day 21), 14 days after the second dose (day 35), and 28 days after the second dose (day 49) to evaluate the immunogenicity of the CS-2034 vaccine. Participants were monitored for safety throughout the 28-day follow-up period, including solicited adverse events, unsolicited adverse events, adverse events of special interest (AESI), and medically attended adverse events (MAE). This report focuses solely on the safety and immunogenicity analysis of adult participants aged 18-59 years, while the long-term phase of the study is still ongoing. This study is registered at ClinicalTrials.gov, NCT05373485. FINDINGS: During the period from May 17, 2022, to August 8, 2022, a total of 155 participants aged 18-59 years were screened for this study. Among them, 115 participants failed the screening process, and 40 participants were randomly enrolled (15 in the low-dose group, 15 in the high-dose group, and 10 in the placebo group). Throughout the 28-day follow-up period, the overall incidence of adverse reactions (related to vaccine administration) in the low-dose group, high-dose group, and placebo group was 93.33% (14/15), 100.00% (15/15), and 80.00% (8/10), respectively. There was a statistically significant difference in the incidence of local adverse reactions (soreness, pruritus, swelling at the injection site) among the low-dose group, high-dose group, and placebo group (P = 0.002). All adverse reactions were mainly of severity grade 1 (mild) or 2 (moderate), and no adverse events of severity grade 4 or higher occurred. Based on the analysis of Spike protein Receptor Binding Domain (S-RBD) IgG antibodies against the BA.1 strain, the seroconversion rates of antibodies at day 21 after the first dose were 86.67%, 93.33%, and 0.00% in the low-dose group, high-dose group, and placebo group, respectively. The geometric mean titer (GMT) of antibodies was 61.2(95%CI 35.3-106.2), 55.4(95%CI 36.3-84.4), and 15.0(95%CI 15.0-15.0), and the geometric mean fold increase (GMI) was 4.08(95%CI 2.35-7.08), 3.69(95%CI 2.42-5.63), and 1.00(95%CI 1.00-1.00) for each group. At day 28 after the full vaccination, the seroconversion rates of antibodies were 100.00%, 93.33%, and 0.00%, and the GMT of antibodies was 810.0(95%CI 511.4-1283.0), 832.2(95%CI 368.1-1881.6), and 15.0(95%CI 15.0-15.0), and the GMI was 54.00(95%CI 34.09-85.53), 55.48(95%CI 24.54-125.44), and 1.00(95%CI 1.00-1.00) for each group, respectively. Based on the analysis of CD3+/CD4+ cell cytokine response, the percentages of IL-2+, IL-4+, IFN-γ+, and TNF-α+ cells increased after 14 days and 28 days of full vaccination in both the low-dose group and high-dose group. The increase was most pronounced in the high-dose group. INTERPRETATION: At day 28 after the full vaccination, both the low-dose and the high-dose CS-2034 vaccine were able to induce the production of high titers of S-RBD IgG antibodies against the BA.1 strain. Adverse reactions in the low-dose and high-dose groups were mainly of severity grade 1 or 2, and no trial-limiting safety concerns were identified. These findings support further development of this vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunogenicidade da Vacina , Adulto , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , China , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Método Duplo-Cego , População do Leste Asiático , Imunoglobulina G , RNA Mensageiro , SARS-CoV-2 , Vacinas Sintéticas/uso terapêutico , Vacinas de mRNA
17.
Front Oncol ; 13: 1223598, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664057

RESUMO

Purpose: To assess the usefulness of amide proton transfer-weighted (APTw) imaging in the differentiation of parotid gland tumors. Materials and methods: Patients with parotid gland tumors who underwent APTw imaging were retrospectively enrolled and divided into groups according to pathology. Two radiologists evaluated the APTw image quality independently, and APTw images with quality score ≥3 were enrolled. The maximum and average values of APTw imaging for tumor lesions (APTmax and APTmean) were measured. The differences in APTmax and APTmean were compared between malignant tumors (MTs) and benign tumors (BTs), as well as between MTs and pleomorphic adenomas (PAs) and between MTs and Warthin tumors (WTs). Independent-samples t-test, Kruskal-Wallis H test, and receiver operating characteristic (ROC) curve analyses were used for statistical analysis. Results: Seventy-three patients were included for image quality evaluation. In this study, 32/73 and 29/73 parotid tumors were scored as 4 and 3, respectively. After excluding lesions with quality score ≤2 (12/73), the APTmean and APTmax of MTs were 4.15% ± 1.33% and 7.43% ± 1.61%, higher than those of BTs 2.74% ± 1.04% and 5.25% ± 1.54%, respectively (p < 0.05). The areas under the ROC curve (AUCs) of the APTmean and APTmax for differentiation between MTs and BTs were 0.819 and 0.821, respectively. MTs indicated significantly higher APTmean and APTmax values than those of PAs (p < 0.05) and WTs (p < 0.05). The AUCs of the APTmean and APTmax for differentiation between MTs and PAs were 0.830 and 0.815 and between MTs and WTs were 0.847 and 0.920, respectively. Conclusion: Most APTw images for parotid tumors had acceptable image quality for APTw value evaluation. Both APTmax and APTmean can be used to differentiate MTs from BTs and to differentiate MTs from subtype parotid gland tumors.

18.
Med Oncol ; 40(9): 276, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612479

RESUMO

Comprehensive analysis of the expression and probable function of LSM2 in Live hepatocellular carcinoma (LIHC), and validation via in vitro experiments. Integrated use of database resources to examine the differential expression, survival prognosis, clinicopathological characteristics, and functional enrichment of LSM2 in LIHC. The expression level of LSM2 in LIHC tissues and adjacent tissues was proven via immunohistochemical staining. The biological function of LSM2 in LIHC was detected by cell proliferation, cell cloning, cell scratch, cell migration, and invasion experiments in vitro. TIMER 2.0 and GEPIA indicated that LSM2 was highly expressed in cancers and was strongly associated with survival rates in LIHC, cholangiocarcinoma, breast cancer, and renal clear cell carcinoma. LSM2 was highly expressed in LIHC, which was closely associated to the clinicopathological characteristics of patients, and the overall survival rate and disease-free survival rate of patients with high expression of LSM2 were lower than those with low expression of LSM2. Functional enrichment results revealed that LSM2 was involved to ribosome formation, DNA replication, cell cycle, metabolic processes, JAK-STAT signaling pathways, and FoxO signaling pathways. Knockdown of LSM2 inhibited the proliferation, migration, and invasion of LIHC cells in vitro experiments. LSM2 was highly expressed in LIHC and was related to a poor prognosis. Knockdown of LSM2 could inhibit the proliferation, migration, and invasion of LIHC cells.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Neoplasias Renais , Neoplasias Hepáticas , Humanos , Ductos Biliares Intra-Hepáticos , Carcinoma Hepatocelular/genética , Biologia Computacional , Neoplasias Hepáticas/genética
19.
BMC Plant Biol ; 23(1): 349, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407922

RESUMO

BACKGROUND: DFR is a crucial structural gene in plant flavonoid and polyphenol metabolism, and DFR knockout (DFR-KO) plants may have increased biomass accumulation. It is uncertain whether DFR-KO has comparable effects in tobacco and what the molecular mechanism is. We employed the CRISPR/Cas9 method to generate a knockout homozygous construct and collected samples from various developmental phases for transcriptome and metabolome detection and analysis. RESULTS: DFR-KO turned tobacco blossoms white on homozygous tobacco (Nicotiana tabacum) plants with both NtDFR1 and NtDFR2 knockout. RNA-seq investigation of anthesis leaf (LF), anthesis flower (FF), mature leaf (LM), and mature root (RM) variations in wild-type (CK) and DFR-KO lines revealed 2898, 276, 311, and 101 differentially expressed genes (DEGs), respectively. DFR-KO primarily affected leaves during anthesis. According to KEGG and GSEA studies, DFR-KO lines upregulated photosynthetic pathway carbon fixation and downregulated photosystem I and II genes. DFR-KO may diminish tobacco anthesis leaf photosynthetic light reaction but boost dark reaction carbon fixation. DFR-KO lowered the expression of pathway-related genes in LF, such as oxidative phosphorylation and proteasome, while boosting those in the plant-pathogen interaction and MAPK signaling pathways, indicating that it may increase biological stress resistance. DFR-KO greatly boosted the expression of other structural genes involved in phenylpropanoid production in FF, which may account for metabolite accumulation. The metabolome showed that LF overexpressed 8 flavonoid metabolites and FF downregulated 24 flavone metabolites. In DFR-KO LF, proteasome-related genes downregulated 16 amino acid metabolites and reduced free amino acids. Furthermore, the DEG analysis on LM revealed that the impact of DFR-KO on tobacco growth may progressively diminish with time. CONCLUSION: The broad impact of DFR-KO on different phases and organs of tobacco development was thoroughly and methodically investigated in this research. DFR-KO decreased catabolism and photosynthetic light reactions in leaves during the flowering stage while increasing carbon fixation and disease resistance pathways. However, the impact of DFR-KO on tobacco growth steadily declined as it grew and matured, and transcriptional and metabolic modifications were consistent. This work offers a fresh insight and theoretical foundation for tobacco breeding and the development of gene-edited strains.


Assuntos
Nicotiana , Complexo de Endopeptidases do Proteassoma , Nicotiana/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Melhoramento Vegetal , Flores , Folhas de Planta/genética , Folhas de Planta/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Lancet Reg Health West Pac ; : 100829, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37360864

RESUMO

Background: People over 60 have been found to develop less protection after two doses of inactivated COVID-19 vaccines than younger people. Heterologous immunisation could potentially induce more robust immune responses compared to homologous immunisation. We aimed to assess the immunogenicity and safety of a heterologous immunisation with an adenovirus type 5-vectored vaccine (Ad5-nCOV, Convidecia) among elderly who were primed with an inactivated vaccine (CoronaVac) previously. Methods: We did a randomised, observer-blinded, non-inferiority trial in healthy adults aged 60 years and older in Lianshui County (Jiangsu, China) between August 26, 2021 and May 15, 2022. 199 eligible participants who had received two doses of CoronaVac in the past 3-6 months were randomised (1:1) to receive a third dose of Convidecia (group A, n = 99) or CoronaVac (group B, n = 100), while 100 participants primed with one dose of CoronaVac in the past 1-2 months were randomised equally to receive a second dose of Convidecia (group C, n = 50) or CoronaVac (group D, n = 50). Participants and investigators were masked to the vaccine received. Primary outcomes were the geometric mean titers (GMTs) of neutralising antibodies against live SARS-CoV-2 virus 14 days after boosting and 28-day adverse reactions. This study was registered with ClinicalTrials.govNCT04952727. Findings: A heterologous third dose of Convidecia resulted in a 6.2-fold (GMTs: 286.4 vs 48.2), 6.3-fold (45.9 vs 7.3) and 7.5-fold (32.9 vs 4.4) increase in neutralising antibodies against SARS-CoV-2 wild-type, delta (B.1.617.2) and omicron (BA.1.1) 14 days post boosting, respectively, compared with the homologous boost. The heterologous booster with Convidecia induced significantly higher neutralsing activities, with up to 91% inhibition in binding of Spike to ACE2 for BA.4 and BA.5 variants, compared with 35% inhibition induced by three doses of CoronaVac. For participants primed with one dose of CoronaVac, a heterologous dose of Convidecia induced higher neutralising antibodies against wild-type than two doses of CoronaVac (GMTs: 70.9 vs 9.3, p < 0.0001), but not for that against variants of concern (GMTs against delta: 5.0 vs 4.0, p = 0.4876; GMTs against omicron: 4.8 vs 3.7, p = 0.4707). Adverse reactions were reported by 8 (8.1%) participants in group A and 4 (4.0%) in group B (p > 0.05), and 8 (16.0%) in group C and 1 (2.0%) in group D (p = 0.031). Interpretation: In elderly individuals primed with two doses of CoronaVac, the heterologous immunisation with Convidecia induced strong antibodies against SARS-CoV-2 wildtype and variants of concern, which could be an alternative regimen for enhancing protection in this vulnerable population. Funding: National Natural Science Foundation of China, Jiangsu Provincial Key Research and Development Program, and Jiangsu Science Fund for Distinguished Young Scholars Program.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA