Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytochem Anal ; 33(1): 136-150, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34231268

RESUMO

INTRODUCTION: Medicinal plants are very important to human health, and ensuring their quality and rapid evaluation are the current research concerns. Deep learning has a strong ability in recognition. This study extended it to the identification of medicinal plants from the perspective of spectrum. OBJECTIVE: In order to realise the rapid identification and provide a reference for the selection of high-quality resources of medicinal plants, a combination of deep learning and two-dimensional correlation spectroscopy (2DCOS) was proposed. METHODS: For the first time, Fourier transform mid-infrared (FT-MIR) and near-infrared (NIR) spectroscopy 2DCOS images combined with residual neural network (ResNet) was used for the origin identification of Paris polyphylla var. yunnanensis. In total 1593 samples were collected and 12821 2DCOS images were drawn. The climate of different origins was briefly analysed. RESULTS: The xishuangbanna, puer, lincang, honghe and wenshan are the five regions with more ecological advantages. The synchronous 2DCOS models of FT-MIR and NIR could realise origin identification with the accuracy of 100%. The synchronous images were suitable for the identification of medicinal plants with complex systems. The full band, feature band and different contour models had no big difference in distinguishing ability, so they were not the key factors affecting the discrimination results. CONCLUSION: The ResNet models established were stable, reliable, and robust, which not only solved the problem of origin identification, expanded the application field of deep learning, but also provided practical reference for the related research of other medicinal plants.


Assuntos
Aprendizado Profundo , Liliaceae , Melanthiaceae , Plantas Medicinais , Análise Espectral
2.
Chem Biodivers ; 18(12): e2100638, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34788487

RESUMO

Cuminum cyminum L. (Cumin) is a flavoring agent that is commonly used worldwide, and is rich in essential oil. Essential oils (Eos) have been intensively investigated in regard to their potential for disease control in plants, which is provided a chance for the blossom of green pesticides. The chemical components of Cumin essential oil (CEO) were revealed by GC/MS, such as cuminaldehyde (44.53 %), p-cymene (12.14 %), (-)-ß-pinene (10.47 %) and γ-terpinene (8.40 %), and found they can inhibit the growth of P. notoginseng-associated pathogenic fungi in vitro and the inhibitory effect of cuminaldehyde was similar to that of hymexazol. SEM and TEM images demonstrated that cuminaldehyde and CEO increased cell permeability and disrupted membrane integrity. The expression of disease-related genes of Fusarium oxysporum showed that CEO induced the expression of most genes, which disrupted biosynthesis, metabolism and signaling pathways. These studies verified the potential of CEO as a plant fungicide that is environmentally friendly and provided ideas for developing new products for controlling root diseases that affect P. notoginseng.


Assuntos
Antifúngicos/farmacologia , Cuminum/química , Fusarium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Panax notoginseng/microbiologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação
3.
Am J Chin Med ; 45(4): 667-736, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28490237

RESUMO

Swertia plants have been considered to be medicinal plants useful for the treatment of various ailments for thousands of years, especially in Asian countries. This is due to the broad variety of chemical compounds that provide multiple ligands for bonding to different endogenous biomacromolecules for patients. Chemical constituents and pharmacological activities of Swertia plants are summarized in this paper. Approximately 419 metabolites and 40 bioactive compounds have been reported from 30 Swertia species, including xanthones, flavonoids, seco-iridiods, iridiods, triterpenoids, alkaloids, volatiles, and other secondary metabolites. The bioactivities of Swertia plants include anticarcinogenic, hepatoprotective, anti-oxidant, hypoglycemic, anthelmintic, antibacterial, antifungal, anti-diabetic, gut, and airways modulatory, metabolizing isozymes inhibitory, neuroprotective, HIV-I reverse transcriptases inhibitory, anticholinergic, and CNS-depressant activities, etc. In addition, biosynthetic pathways of xanthones, and seco-iridiods, two most important secondary metabolites for Swertia, are elucidated. The xanthones biosynthetic pathway is a mixed biosynthetic pathway involved the shikimate and the malonate routes, and the seco-iridoid pathway starts with geraniol derived from IPP which is produced either via the MEP or the MVA pathway. This review will offer a reference for future researches on the protection of natural resources, the investigation of therapeutic basis, new drug development, and so forth. Metabolic pathways of some crucial active compounds were also discussed in this review.


Assuntos
Extratos Vegetais/química , Extratos Vegetais/farmacologia , Swertia/química , Alcaloides/isolamento & purificação , Animais , Anti-Helmínticos , Antibacterianos , Antifúngicos , Antineoplásicos Fitogênicos , Antioxidantes , Depressores do Sistema Nervoso Central , Antagonistas Colinérgicos , Flavonoides/biossíntese , Flavonoides/isolamento & purificação , Humanos , Hipoglicemiantes , Iridoides/isolamento & purificação , Fármacos Neuroprotetores , Inibidores da Transcriptase Reversa , Triterpenos/isolamento & purificação , Xantonas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA