Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Immun Inflamm Dis ; 12(5): e1277, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775687

RESUMO

BACKGROUND: Kawasaki disease (KD) is an autoimmune disease with cardiovascular disease as its main complication, mainly affecting children under 5 years old. KD treatment has made tremendous progress in recent years, but intravenous immunoglobulin (IVIG) resistance remains a major dilemma. Bibliometric analysis had not been used previously to summarize and analyze publications related to IVIG resistance in KD. This study aimed to provide an overview of the knowledge framework and research hotspots in this field through bibliometrics, and provide references for future basic and clinical research. METHODS: Through bibliometric analysis of relevant literature published on the Web of Science Core Collection (WoSCC) database between 1997 and 2023, we investigated the cooccurrence and collaboration relationships among countries, institutions, journals, and authors and summarized key research topics and hotspots. RESULTS: Following screening, a total of 364 publications were downloaded, comprising 328 articles and 36 reviews. The number of articles on IVIG resistance increased year on year and the top three most productive countries were China, Japan, and the United States. Frontiers in Pediatrics had the most published articles, and the Journal of Pediatrics had the most citations. IVIG resistance had been studied by 1889 authors, of whom Kuo Ho Chang had published the most papers. CONCLUSION: Research in the field was focused on risk factors, therapy (atorvastatin, tumor necrosis factor-alpha inhibitors), pathogenesis (gene expression), and similar diseases (multisystem inflammatory syndrome in children, MIS-C). "Treatment," "risk factor," and "prediction" were important keywords, providing a valuable reference for scholars studying this field. We suggest that, in the future, more active international collaborations are carried out to study the pathogenesis of IVIG insensitivity, using high-throughput sequencing technology. We also recommend that machine learning techniques are applied to explore the predictive variables of IVIG resistance.


Assuntos
Bibliometria , Resistência a Medicamentos , Imunoglobulinas Intravenosas , Síndrome de Linfonodos Mucocutâneos , Humanos , Imunoglobulinas Intravenosas/administração & dosagem , Imunoglobulinas Intravenosas/farmacologia , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Síndrome de Linfonodos Mucocutâneos/epidemiologia
2.
Adv Sci (Weinh) ; 10(27): e2302025, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37515378

RESUMO

YTH domain family 2 (YTHDF2) is the first identified N6-methyladenosine (m6 A) reader that regulates the status of mRNA. It has been reported that overexpressed YTHDF2 promotes carcinogenesis; yet, its role in hepatocellular carcinoma (HCC) is elusive. Herein, it is demonstrated that YTHDF2 is upregulated and can predict poor outcomes in HCC. Decreased ubiquitination levels of YTHDF2 contribute to the upregulation of YTHDF2. Furthermore, heat shock protein 90 beta (HSP90ß) and STIP1 homology and U-box-containing protein 1 (STUB1) physically interact with YTHDF2 in the cytoplasm. Mechanically, the large and small middle domain of HSP90ß is required for its interaction with STUB1 and YTHDF2. HSP90ß inhibits the STUB1-induced degradation of YTHDF2 to elevate the expression of YTHDF2 and to further boost the proliferation and sorafenib resistance of HCC. Moreover, HSP90ß and YTHDF2 are upregulated, while STUB1 is downregulated in HCC tissues. The expression of HSP90ß is positively correlated with the YTHDF2 protein level, whereas the expression of STUB1 is negatively correlated with the protein levels of YTHDF2 and HSP90ß. These findings deepen the understanding of how YTHDF2 is regulated to drive HCC progression and provide potential targets for treating HCC.


Assuntos
Carcinoma Hepatocelular , Proteínas de Choque Térmico HSP90 , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sorafenibe/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Regulação para Cima , Proteínas de Choque Térmico HSP90/metabolismo
3.
Int J Biol Sci ; 19(2): 377-392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632463

RESUMO

HER2 is a transmembrane receptor with intrinsic tyrosine kinase activity that is overexpressed in almost 25% of human breast cancers. Here, we report that the neddylation of HER2 is a new post-translational modification that controls its expression and oncogenic activity in human breast cancer. Two critical members in the neddylation pathway, NEDD8 and NEDD8-activating enzyme E1 subunit 1 (NAE1), are detected in human breast specimens. Overexpressed NEDD8 and NAE1 are positively correlated with HER2 expression in human breast cancer. Subsequent structure and function experiments show that HER2 directly interacts with NEDD8 and NAE1, whereas HER2 protein expression is decreased by neddylation depletion. Mechanistically, neddylation inhibition promotes the degradation of HER2 protein by improving its ubiquitination. HER2 overexpression abrogates neddylation depletion-triggered cell growth suppression. The inhibition of neddylation synergized with trastuzumab significantly suppresses growth of HER2 positive breast cancer. Collectively, this study demonstrates a previously undiscovered role of NEDD8-dependent HER2 neddylation promotes tumor growth in breast cancer.


Assuntos
Neoplasias da Mama , Proteína NEDD8 , Proteólise , Receptor ErbB-2 , Ubiquitinação , Feminino , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Processamento de Proteína Pós-Traducional , Receptor ErbB-2/metabolismo , Proteína NEDD8/metabolismo , Progressão da Doença
4.
Pediatr Res ; 93(7): 1883-1890, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36329225

RESUMO

BACKGROUND: This study aimed to explore the functions of ubiquitin-specific protease 5 (USP5) in the endothelial inflammation of Kawasaki disease (KD). METHODS: USP5 expression levels in HCAECs were examined after stimulation with TNFα or KD sera. The inflammatory cytokine expression level and nuclear factor κB (NF-κB) signaling activation proteins were also investigated in HCAECs by using USP5 overexpression/knockdown lentivirus as well as its small molecule inhibitor vialinin A. RESULTS: USP5 expression level is upregulated in HCAECs after stimulation with KD sera. Similarly, the USP5 expression level is also increased in a time- and dose-dependent manner upon TNFα stimulation in HCAECs. Moreover, USP5 sustains proinflammatory cytokine production and NF-κB signaling activation, whereas USP5 knockdown causes the proinflammatory cytokine levels to decrease and suppress NF-κB signaling activation. Notably, the USP5 inhibitor vialinin A can suppress the expression of inflammatory genes induced by TNFα and IL-1ß in HCAECs. CONCLUSIONS: Our study identified USP5 as a positive regulator of TNFα production and its downstream signaling activation during the inflammatory responses in HCAECs, and demonstrated that its inhibitor vialinin A might serve as a candidate drug for KD therapy to prevent the excessive production of proinflammatory cytokines. IMPACT: USP5 is upregulated in human coronary artery endothelial cells (HCAECs) whether incubated with acute KD sera or TNFα in vitro. USP5 promotes proinflammatory cytokine expression by sustaining NF-κB signaling activation in HCAECs. The USP5 inhibitor vialinin A can suppress the expression levels of proinflammatory cytokines in HCAEC, thus providing a novel mechanism and intervention strategy in KD therapy.


Assuntos
Síndrome de Linfonodos Mucocutâneos , Proteases Específicas de Ubiquitina , Humanos , Citocinas/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Síndrome de Linfonodos Mucocutâneos/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
5.
Acta Pharmacol Sin ; 44(4): 853-864, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36261513

RESUMO

Hepatocellular carcinoma (HCC) remains challenging due to the lack of efficient therapy. Promoting degradation of certain cancer drivers has become an innovative therapy. The nuclear transcription factor sine oculis homeobox 1 (SIX1) is a key driver for the progression of HCC. Here, we explored the molecular mechanisms of ubiquitination of SIX1 and whether targeting SIX1 degradation might represent a potential strategy for HCC therapy. Through detecting the ubiquitination level of SIX1 in clinical HCC tissues and analyzing TCGA and GEPIA databases, we found that ubiquitin specific peptidase 1 (USP1), a deubiquitinating enzyme, contributed to the lower ubiquitination and high protein level of SIX1 in HCC tissues. In HepG2 and Hep3B cells, activation of EGFR-AKT signaling pathway promoted the expression of USP1 and the stability of its substrates, including SIX1 and ribosomal protein S16 (RPS16). In contrast, suppression of EGFR with gefitinib or knockdown of USP1 restrained EGF-elevated levels of SIX1 and RPS16. We further revealed that SNS-023 (formerly known as BMS-387032) induced degradation of SIX1 and RPS16, whereas this process was reversed by reactivation of EGFR-AKT pathway or overexpression of USP1. Consequently, inactivation of the EGFR-AKT-USP1 axis with SNS-032 led to cell cycle arrest, apoptosis, and suppression of cell proliferation and migration in HCC. Moreover, we showed that sorafenib combined with SNS-032 or gefitinib synergistically inhibited the growth of Hep3B xenografts in vivo. Overall, we identify that both SIX1 and RPS16 are crucial substrates for the EGFR-AKT-USP1 axis-driven growth of HCC, suggesting a potential anti-HCC strategy from a novel perspective.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/patologia , Gefitinibe , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB , Proteínas Ribossômicas , Proteínas de Homeodomínio/metabolismo
6.
Oncogene ; 41(49): 5253-5265, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36316443

RESUMO

Glioma is the most common malignant primary brain tumor with aggressiveness and poor prognosis. Although extracellular vesicles (EVs)-based cell-to-cell communication mediates glioma progression, the key molecular mediators of this process are still not fully understood. Herein, we elucidated an EVs-mediated transfer of suprabasin (SBSN), leading to the aggressiveness and progression of glioma. High levels of SBSN were positively correlated with clinical grade, predicting poor clinical prognosis of patients. Upregulation of SBSN promoted, while silencing of SBSN suppressed tumorigenesis and aggressiveness of glioma cells in vivo. EVs-mediated transfer of SBSN resulted in an increase in SBSN levels, which promoted the aggressiveness of glioma cells by enhancing migration, invasion, and angiogenesis of recipient glioma cells. Mechanistically, SBSN activated NF-κB signaling by interacting with annexin A1, which further induced Lys63-linked and Met1-linear polyubiquitination of NF-κB essential modulator (NEMO). In conclusion, the communication of SBSN-containing EVs within glioma cells drives the formation and development of tumors by activating NF-κB pathway, which may provide potential therapeutic target for clinical intervention in glioma.


Assuntos
Vesículas Extracelulares , Glioma , Humanos , Antígenos de Diferenciação/metabolismo , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Glioma/patologia , Proteínas de Neoplasias/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Ubiquitinação
7.
Int J Biol Sci ; 18(6): 2439-2451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35414775

RESUMO

Prostate cancer (PC) remains a great medical challenge due to its high incidence and the development of castration resistance in patients treated with androgen deprivation therapy. Deubiquitinases, the enzymes that specifically hydrolyze ubiquitin chains on their substrates, were recently proposed as a serious of critical therapeutic targets for cancer treatment. Our previous study has been reported that the ubiquitin specific peptidase 1 (USP1) functionally acts as a deubiquitinase of sine oculis homeobox homolog 1 (SIX1) and contributes to the proliferation and castration resistance of PC. The stabilization of SIX1 by USP1 partially depends on the status of glucose-regulated protein 75 (GRP75). In this study, we aimed to identify a SIX1 degradation inducer via inhibiting the USP1-SIX1 axis. we screened a range of kinase inhibitors and showed that SNS-032 is the best candidate to trigger the ubiquitinated degradation of SIX1. SNS-032 not only restrains activity of the USP1-SIX1 axis and cell cycle progression, but also results in apoptosis of PC cells. Moreover, the combination of SNS-032 and enzalutamide synergistically induces apoptosis and downregulates expression of USP1, SIX1, and AR/AR-V7 in AR-V7 highly expressed 22Rv1 cells. Overall, our findings may develop a novel and effective strategy to overcome castration resistance in PC for the identification of a SIX1 degradation inducer via targeting the USP1-SIX1 axis.


Assuntos
Antagonistas de Androgênios , Neoplasias de Próstata Resistentes à Castração , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Homeodomínio/genética , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
8.
Pediatr Res ; 91(3): 565-571, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33790413

RESUMO

BACKGROUND: Lethal neonatal rigidity and multifocal seizure syndrome (RMFSL) is caused by variants in BRAT1 (BRCA1-associated protein required for ATM activation-1). However, the molecular mechanism of RMFSL is still unclear. METHODS: An RMFSL infant was recruited and the peripheral blood samples from his trio-family were collected. The genomic DNA was extracted, and then the whole-exome sequencing was performed. The expression of BRAT1 was analyzed by Western blotting. The subcellular localization of BRAT1 and MitoSOX (mitochondrial superoxide level) was investigated by confocal microscopy. The RNA samples were obtained from transfected cells, and then the RNA sequencing was performed. RESULTS: In this study, a novel homozygous BRAT1 variant c.233G > C with amino acid change of R with P at residue 78 (R78P) was identified. This variant altered the peptide structure and subcellular localization, as well as the expression in vitro. However, R78P did not alter the ability of BRAT1 to downregulate MitoSOX in mitochondria. Meanwhile, R78P BRAT1 was positively correlated with temporal lobe epilepsy, autosomal recessive primary microcephaly, defective/absent horizontal voluntary eye movements, and neuron apoptotic process as indicated by gene set enrichment analysis (GSEA). CONCLUSIONS: The BRAT1 variant spectrum has been expanded, which will be helpful for genetic counseling. We also explored the molecular mechanism altered by R78P, which will provide a better understanding of the pathogenesis of RMFSL. IMPACT: The detailed course of an infant with lethal neonatal RMFSL was depicted. A novel disease-causing variant R78P in BRAT1 for lethal neonatal RMFSL was identified. R78P led to reduced BRAT1 expression and nuclear localization in vitro. R78P did not alter the ability of BRAT1 to downregulate MitoSOX in the mitochondria. The variant R78P in BRAT1 was positively correlated with temporal lobe epilepsy, autosomal recessive primary microcephaly, defective/absent horizontal voluntary eye movements, and neuron apoptotic process as indicated by GSEA.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Microcefalia , Humanos , Lactente , Recém-Nascido , Microcefalia/genética , Mutação , Proteínas Nucleares/genética , Linhagem , Convulsões/genética
9.
J Biol Chem ; 297(5): 101258, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34599966

RESUMO

The underlying mechanism of neointima formation remains unclear. Ubiquitin-specific peptidase 10 (USP10) is a deubiquitinase that plays a major role in cancer development and progression. However, the function of USP10 in arterial restenosis is unknown. Herein, USP10 expression was detected in mouse arteries and increased after carotid ligation. The inhibition of USP10 exhibited thinner neointima in the model of mouse carotid ligation. In vitro data showed that USP10 deficiency reduced proliferation and migration of rat thoracic aorta smooth muscle cells (A7r5) and human aortic smooth muscle cells (HASMCs). Mechanically, USP10 can bind to Skp2 and stabilize its protein level by removing polyubiquitin on Skp2 in the cytoplasm. The overexpression of Skp2 abrogated cell cycle arrest induced by USP10 inhibition. Overall, the current study demonstrated that USP10 is involved in vascular remodeling by directly promoting VSMC proliferation and migration via stabilization of Skp2 protein expression.


Assuntos
Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Ubiquitina Tiolesterase/metabolismo , Linhagem Celular , Movimento Celular , Proliferação de Células , Humanos , Neointima/genética , Estabilidade Proteica , Proteínas Quinases Associadas a Fase S/genética , Ubiquitina Tiolesterase/genética
10.
Cell Death Dis ; 12(10): 857, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548474

RESUMO

Androgen receptor splice variant 7 (AR-V7), a form of ligand-independent and constitutively activating variant of androgen receptor (AR), is considered as the key driver to initiate castration-resistant prostate cancer (CRPC). Because AR-V7 lacks ligand-binding domain, the AR-targeted therapies that aim to inactivate AR signaling through disrupting the interaction between AR and androgen are limited in CRPC. Thus, the emergence of AR-V7 has become the greatest challenge for treating CRPC. Targeting protein degradation is a recently proposed novel avenue for cancer treatment. Our previous studies have been shown that the oncoprotein AR-V7 is a substrate of the proteasome. Identifying novel drugs that can trigger the degradation of AR-V7 is therefore critical to cure CRPC. Here we show that nobiletin, a polymethoxylated flavonoid derived from the peel of Citrus fruits, exerts a potent anticancer activity via inducing G0/G1 phase arrest and enhancing the sensitivity of cells to enzalutamide in AR-V7 positive PC cells. Mechanically, we unravel that nobiletin selectively induces proteasomal degradation of AR-V7 (but not AR). This effect relies on its selective inhibition of the interactions between AR-V7 and two deubiquitinases USP14 and USP22. These findings not only enrich our understanding on the mechanism of AR-V7 degradation, but also provide an efficient and druggable target for overcoming CRPC through interfering the stability of AR-V7 mediated by the interaction between AR-V7 and deubiquitinase.


Assuntos
Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteólise , Receptores Androgênicos/metabolismo , Animais , Benzamidas/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Flavonas/farmacologia , Humanos , Lisina/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação
11.
J Exp Clin Cancer Res ; 40(1): 201, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154657

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) remains a medical challenge due to its high proliferation and metastasis. Although deubiquitinating enzymes (DUBs) play a key role in regulating protein degradation, their pathological roles in HCC have not been fully elucidated. METHODS: By using biomass spectrometry, co-immunoprecipitation, western blotting and immunofluorescence assays, we identify ribosomal protein S16 (RPS16) as a key substrate of ubiquitin-specific peptidase 1 (USP1). The role of USP1-RPS16 axis in the progression of HCC was evaluated in cell cultures, in xenograft mouse models, and in clinical observations. RESULTS: We show that USP1 interacts with RPS16. The depletion of USP1 increases the level of K48-linked ubiquitinated-RPS16, leading to proteasome-dependent RPS16 degradation. In contrast, overexpression of USP1-WT instead of USP1-C90A (DUB inactivation mutant) reduces the level of K48-linked ubiquitinated RPS16, thereby stabilizing RPS16. Consequently, USP1 depletion mimics RPS16 deficiency with respect to the inhibition of growth and metastasis, whereas transfection-enforced re-expression of RPS16 restores oncogenic-like activity in USP1-deficient HCC cells. Importantly, the high expression of USP1 and RPS16 in liver tissue is a prognostic factor for poor survival of HCC patients. CONCLUSIONS: These findings reveal a previously unrecognized role for the activation of USP1-RPS16 pathway in driving HCC, which may be further developed as a novel strategy for cancer treatment.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Ribossômicas/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Proteínas Ribossômicas/genética , Transfecção , Proteases Específicas de Ubiquitina/genética
12.
Oncogene ; 40(25): 4291-4306, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079090

RESUMO

Prostate cancer (PC) is the second most common cancer with limited treatment option in males. Although the reactivation of embryonic signals in adult cells is one of the characteristics of cancer, the underlying protein degradation mechanism remains elusive. Here, we show that the molecular chaperone GRP75 is a key player in PC cells by maintaining the protein stability of SIX1, a transcription factor for embryonic development. Mechanistically, GRP75 provides a platform to recruit the deubiquitinating enzyme USP1 to inhibit K48-linked polyubiquitination of SIX1. Structurally, the C-terminus of GRP75 (433-679 aa) contains a peptide binding domain, which is required for the formation of GRP75-USP1-SIX1 protein complex. Functionally, pharmacological or genetic inhibition of the GRP75-USP1-SIX1 protein complex suppresses tumor growth and overcomes the castration resistance of PC cells in vitro and in xenograft mouse models. Clinically, the protein expression of SIX1 in PC tumor tissues is positively correlated with the expression of GRP75 and USP1. These new findings not only enhance our understanding of the protein degradation mechanism, but also may provide a potential way to enhance the anti-cancer activity of androgen suppression therapy.


Assuntos
Proteínas de Choque Térmico HSP70/genética , Proteínas de Homeodomínio/genética , Proteínas Mitocondriais/genética , Neoplasias de Próstata Resistentes à Castração/genética , Proteases Específicas de Ubiquitina/genética , Animais , Castração , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Proteólise , Receptores Androgênicos/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Ubiquitinação/genética
13.
Exp Ther Med ; 22(1): 784, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34055083

RESUMO

Kawasaki disease (KD) is an acute, self-limiting form of vasculitis commonly encountered in infants and young children. Intravenous immunoglobulin (IVIG) is the primary drug used for the treatment of KD, which may significantly reduce the occurrence of coronary artery lesions. However, the specific molecular profile changes of KD caused by IVIG treatment have remained elusive and require further research. The present study was designed to identify key genes, pathways and immune cells affected by IVIG treatment using multiple bioinformatics analysis methods. The results suggested that myeloid cells and neutrophils were affected by IVIG treatment. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified that hematopoietic cell lineages and osteoclast differentiation may have an important role in the mechanism of action of IVIG treatment. Immune cell analysis indicated that the levels of monocytes, M1 macrophages, neutrophils and platelets were markedly changed in patients with KD after vs. prior to IVIG treatment. The key upregulated genes, including ZW10 interacting kinetochore protein, GINS complex subunit 1 and microRNA-30b-3p in whole blood cells of patients with KD following treatment with IVIG indicated that these IVIG-targeted molecules may have important roles in KD. In addition, these genes were further examined by literature review and indicated to be involved in cell proliferation, apoptosis and virus-related immune response in patients with KD. Therefore, the present results may provide novel insight into the mechanisms of action of IVIG treatment for KD.

14.
Cell Death Dis ; 12(5): 456, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963175

RESUMO

Chronic myelogenous leukemia (CML) is a clonal malignancy of hematopoietic stem cells featured with the fusion protein kinase BCR-ABL. To elicit the mechanism underlying BCR-ABL stability, we perform a screen against a panel of deubiquitinating enzymes (DUBs) and find that the ubiquitin-specific protease 7 (USP7) drastically stabilizes the BCR-ABL fusion protein. Further studies show that USP7 interacts with BCR-ABL and blocks its polyubiquitination and degradation. Moreover, USP7 knockdown triggers BCR-ABL degradation and suppresses its downstream signaling transduction. In line with this finding, genetic or chemical inhibition of USP7 leads to BCR-ABL protein degradation, suppresses BCR/ABL signaling, and induces CML cell apoptosis. Furthermore, we find the antimalarial artesunate (ART) significantly inhibits USP7/BCR-ABL interaction, thereby promoting BCR-ABL degradation and inducing CML cell death. This study thus identifies USP7 as a putative Dub of BCR-ABL and provides a rationale in targeting USP7/BCR-ABL for the treatment of CML.


Assuntos
Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Apoptose , Proliferação de Células , Humanos , Transfecção
15.
Cell Death Dis ; 12(4): 329, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771975

RESUMO

Breast cancer has the highest incidence and mortality in women worldwide. There are 70% of breast cancers considered as estrogen receptor α (ERα) positive. Therefore, the ERα-targeted therapy has become one of the most effective solution for patients with breast cancer. Whereas a better understanding of ERα regulation is critical to shape evolutional treatments for breast cancer. By exploring the regulatory mechanisms of ERα at levels of post-translational modifications, we identified the deubiquitinase USP15 as a novel protector for preventing ERα degradation and a critical driver for breast cancer progression. Specifically, we demonstrated that USP15 promoted the proliferation of ERα+, but not ERα- breast cancer, in vivo and in vitro. Meanwhile, USP15 knockdown notably enhanced the antitumor activities of tamoxifen on breast cancer cells. Importantly, USP15 knockdown induced the downregulation of ERα protein via promoting its K48-linked ubiquitination, which is required for proliferative inhibition of breast cancer cells. These findings not only provide a novel treatment for overcoming resistance to endocrine therapy, but also represent a therapeutic strategy on ERα degradation by targeting USP15-ERα axis.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Progressão da Doença , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Células MCF-7 , Transdução de Sinais , Transfecção , Ubiquitinação
16.
Am J Cancer Res ; 10(11): 3721-3736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294263

RESUMO

Breast cancer (BCa) has the highest incidence and mortality among malignant diseases in female worldwide. BCa is frequently caused by estrogen receptor α (ERα), a ligand-dependent receptor that highly expressed in about 70% of breast tumors. Therefore, ERα has become a well-characterized and the most effective target for treating ERα-expressing BCa (ERα+ BCa). However, the acquire resistance was somehow developed in patients who received current ERα signaling-targeted endocrine therapies. Hence, discovery of novel anti-estrogen/ERα strategies is urgent. In the present study, we identified butein as a potential agent for breast cancer treatment by the use of a natural product library. We showed that butein inhibits the growth of ERα+ BCa both in vitro and in vivo which is associated with cell cycle arrest that partially triggered by butein-induced ERα downregulation. Mechanically, butein binds to a specific pocket of ERα and promotes proteasome-mediated degradation of the receptor. Collectively, this work reveals that butein is a candidate to diminish ERα signaling which represents a potentially novel strategy for treating BCa.

17.
Aging (Albany NY) ; 12(22): 22892-22905, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33197885

RESUMO

Foam cell formation process is involved in the pathogenesis of atherosclerosis (AS). Activation of this biological process depends on lipid uptake by scavenger receptors, such as CD36, SR-A and SR-B1. Among these receptors, CD36 is the principal one because it dominates roughly 50% lipid uptake in monocytes. In this study, our western blotting and RT-qPCR assays revealed that USP10 inhibition promotes the degradation of CD36 protein but does not change its mRNA level. In addition, Co-IP results showed that USP10 interacts with CD36 and stabilizes CD36 protein by cleaving poly-ubiquitin on CD36. Significantly, USP10 promotes foam cell formation. Immunofluorescence and Oil red O staining assays show that inhibition or knockdown of USP10 suppresses lipid uptake and foam cell formation by macrophages. In conclusion, USP10 promotes the development and progression of atherosclerosis through stabilizing CD36 protein expression. The regulation of USP10-CD36 may provide a significant therapeutic scheme in atherosclerosis.


Assuntos
Antígenos CD36/metabolismo , Células Espumosas/enzimologia , Lipoproteínas LDL/metabolismo , Macrófagos/enzimologia , Ubiquitina Tiolesterase/metabolismo , Linhagem Celular , Humanos , Ubiquitina Tiolesterase/genética
18.
Cell Death Dis ; 11(8): 636, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32801299

RESUMO

Atherosclerosis-associated cardiovascular diseases are main causes leading to high mortality worldwide. Macrophage-derived foam cell formation via uptaking modified lipoproteins is the initial and core step in the process of atherosclerosis. Meanwhile, scavenger receptor is indispensable for the formation of foam cells. UCHL1, a deubiquitinase, has been widely studied in multiple cancers. UCHL1 could be an oncogene or a tumor suppressor in dependent of tumor types. It remains unknown whether UCHL1 influences cellular oxLDL uptake. Herein we show that UCHL1 deletion significantly inhibits lipid accumulation and foam cell formation. Subsequently, we found that UCHL1 inhibitor or siRNA downregulates the expression of CD36 protein whereas SR-A, ABCA1, ABCG1, Lox-1, and SR-B1 have no significant change. Furthermore, the treatment of UCHL1 inhibition increases the abundance of K48-polyubiquitin on CD36 and the suppression of lipid uptake induced by UCHL1 deficiency is attenuated by blocking CD36 activation. Our study concluded that UCHL1 deletion decreases foam cell formation by promoting the degradation of CD36 protein, indicating UCHL1 may be a potential target for atherosclerosis treatment.


Assuntos
Antígenos CD36/metabolismo , Células Espumosas/metabolismo , Ubiquitina Tiolesterase/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Aterosclerose/patologia , Transporte Biológico , Linhagem Celular , Colesterol/metabolismo , Enzimas Desubiquitinantes/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Depuradores Classe A/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitinação
19.
Eur J Pharmacol ; 883: 173366, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679184

RESUMO

Bcr-Abl is the primary cause as well as currently key therapeutic target of chronic myeloid leukemia (CML). SKP2, an E3 ligase, is a downstream factor of Bcr-Abl to motivate the cell cycle transition of CML and also found to bind and activate Bcr-Abl in reverse. Therefore, SKP2/Bcr-Abl pathway is an attractive target for CML treatment. This study aims to identify an inhibitor of the SKP2/Bcr-Abl pathway based on a large screening of the natural products. We demonstrate that Diosmetin, a kind of phytoestrogens, notably downregulates the expression of SKP2, Bcr-Abl phosphorylation, and moderately downregulates the Bcr-Abl level. Furthermore, Diosmetin displays a favorable anti-tumor activity in CML cells and xenograft models. Collectively, our study reveals a natural compound in the treatment of CML on the basis of SKP2/Bcr-Abl signaling pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Flavonoides/farmacologia , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cell Death Dis ; 11(7): 547, 2020 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-32683421

RESUMO

HER2+ breast cancer (BC) is characterized by rapid growth, early recurrence, early metastasis, and chemoresistance. Trastuzumab is the most effective treatment for HER2+ BC and effectively reduces the risk of recurrence and death of patients. Resistance to trastuzumab results in cancer recurrence and metastasis, leading to poor prognosis of HER2+ BC. In the present study, we found that non-structural maintenance of chromosome condensin 1 complex subunit G (NCAPG) expression was highly upregulated in trastuzumab-resistant HER2+ BC. Ectopic NCAPG was positively correlated with tumor relapse and shorter survival in HER2+ BC patients. Moreover, overexpression of NCAPG promoted, while silencing of NCAPG reduced, the proliferative and anti-apoptotic capacity of HER2+ BC cells both in vitro and in vivo, indicating NCAPG reduces the sensitivity of HER2+ BC cells to trastuzumab and may confer trastuzumab resistance. Furthermore, our results suggest that NCAPG triggers a series of biological cascades by phosphorylating SRC and enhancing nuclear localization and activation of STAT3. To summarize, our study explores a crucial role for NCAPG in trastuzumab resistance and its underlying mechanisms in HER2+ BC, and suggests that NCAPG could be both a potential prognostic marker as well as a therapeutic target to effectively overcome trastuzumab resistance.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptor ErbB-2/metabolismo , Fator de Transcrição STAT3/metabolismo , Trastuzumab/uso terapêutico , Quinases da Família src/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Trastuzumab/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA