Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067011

RESUMO

Varroa destructor injects a salivary secretion into honeybees during their feeding process. The salivary secretion plays a vital role in mite-bee interactions and is the main cause of honeybee illness. To determine the biological function of cystatin-L2-like, one of the components of V. destructor salivary secretion, its gene expression in mites during the reproductive phase and dispersal phase was quantified using RT-qPCR, respectively. Moreover, the E. coli-expressed and -purified cystatin was injected into the white-eyed honeybee pupae, and its effects on the survival, the weight of the newly emerged bee, and the transcriptome were determined. The results showed that cystatin was significantly upregulated in mites during the reproductive phase. Cystatin significantly shortened the lifespan of pupae and decreased the weight of the newly emerged bees. Transcriptome sequencing showed that cystatin upregulated 1496 genes and downregulated 1483 genes in pupae. These genes were mainly enriched in ATP synthesis, the mitochondrial respiratory chain, and cuticle structure and function. Cystatin comprehensively downregulated the metabolism of carbohydrates, fatty acids, and amino acids, and energy production in the pupae. The downregulation of metabolic activity could save more nutrients and energy for V. destructor, helping it to maximize its reproduction potential, implying that the mite could manipulate the metabolism of host bees through the injected salivary secretion. The results provide new insights into mite-bee interactions, providing a basis for related studies and applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA