Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Surg Endosc ; 38(4): 2134-2141, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443500

RESUMO

INTRODUCTION: A history of lung transplantation is a risk factor for poor outcomes in patients undergoing laparoscopic fundoplication. We wanted to determine whether enhanced recovery after a robotic-assisted surgery program would mitigate these risks. METHODS: We performed a single-center retrospective analysis of the Society of Thoracic Surgery database for patients who underwent elective antireflux procedures from 1/2018 to 2/2021 under the enhanced recovery after surgery program using robotic assistance. We identified the patient and surgical characteristics, morbidity, length of stay, and 30-day readmission rates. RESULTS: Among 386 patients who underwent barrier creation, 41 had previously undergone a lung transplant, either bilateral (n = 28) or single (n = 13). There were no significant differences in postoperative complications (9.8% vs. 5.2%, p = 0.27), median hospital length of stay (1 d vs. 1 d, p = 0.28), or 30-day readmission (7.3% vs. 4.9%, p = 0.46). Bivariate analysis showed that older age (p = 0.03), history of DVT/PE (p < 0.001), history of cerebrovascular events (p = 0.03), opioid dependence (p = 0.02), neurocognitive dysfunction (p < 0.001), and dependent functional status (p = 0.02) were associated with postoperative complications. However, lung transplantation was not associated with an increased risk of postoperative complications (p = 0.28). DISCUSSION: The risk of surgical complications in patients with a history of lung transplantation may be mitigated by the combination of ERAS and minimally invasive surgery such as robot-assisted surgery.


Assuntos
Recuperação Pós-Cirúrgica Melhorada , Laparoscopia , Transplante de Pulmão , Procedimentos Cirúrgicos Robóticos , Humanos , Fundoplicatura/métodos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Procedimentos Cirúrgicos Robóticos/métodos , Estudos Retrospectivos , Transplante de Pulmão/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Tempo de Internação
2.
Am J Respir Crit Care Med ; 208(9): 930-943, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695863

RESUMO

Rationale: CFTR (cystic fibrosis transmembrane conductance regulator) modulator drugs restore function to mutant channels in patients with cystic fibrosis (CF) and lead to improvements in body mass index and lung function. Although it is anticipated that early childhood treatment with CFTR modulators will significantly delay or even prevent the onset of advanced lung disease, lung neutrophils and inflammatory cytokines remain high in patients with CF with established lung disease despite modulator therapy, underscoring the need to identify and ultimately target the sources of this inflammation in CF lungs. Objectives: To determine whether CF lungs, like chronic obstructive pulmonary disease (COPD) lungs, harbor potentially pathogenic stem cell "variants" distinct from the normal p63/Krt5 lung stem cells devoted to alveolar fates, to identify specific variants that might contribute to the inflammatory state of CF lungs, and to assess the impact of CFTR genetic complementation or CFTR modulators on the inflammatory variants identified herein. Methods: Stem cell cloning technology developed to resolve pathogenic stem cell heterogeneity in COPD and idiopathic pulmonary fibrosis lungs was applied to end-stage lungs of patients with CF (three homozygous CFTR:F508D, one CFTR F508D/L1254X; FEV1, 14-30%) undergoing therapeutic lung transplantation. Single-cell-derived clones corresponding to the six stem cell clusters resolved by single-cell RNA sequencing of these libraries were assessed by RNA sequencing and xenografting to monitor inflammation, fibrosis, and mucin secretion. The impact of CFTR activity on these variants after CFTR gene complementation or exposure to CFTR modulators was assessed by molecular and functional studies. Measurements and Main Results: End-stage CF lungs display a stem cell heterogeneity marked by five predominant variants in addition to the normal lung stem cell, of which three are proinflammatory both at the level of gene expression and their ability to drive neutrophilic inflammation in xenografts in immunodeficient mice. The proinflammatory functions of these three variants were unallayed by genetic or pharmacological restoration of CFTR activity. Conclusions: The emergence of three proinflammatory stem cell variants in CF lungs may contribute to the persistence of lung inflammation in patients with CF with advanced disease undergoing CFTR modulator therapy.


Assuntos
Fibrose Cística , Doença Pulmonar Obstrutiva Crônica , Humanos , Pré-Escolar , Animais , Camundongos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Inflamação/metabolismo
3.
Sci Transl Med ; 15(693): eabp9528, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099633

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and rapidly fatal interstitial lung disease marked by the replacement of lung alveoli with dense fibrotic matrices. Although the mechanisms initiating IPF remain unclear, rare and common alleles of genes expressed in lung epithelia, combined with aging, contribute to the risk for this condition. Consistently, single-cell RNA sequencing (scRNA-seq) studies have identified lung basal cell heterogeneity in IPF that might be pathogenic. We used single-cell cloning technologies to generate "libraries" of basal stem cells from the distal lungs of 16 patients with IPF and 10 controls. We identified a major stem cell variant that was distinguished from normal stem cells by its ability to transform normal lung fibroblasts into pathogenic myofibroblasts in vitro and to activate and recruit myofibroblasts in clonal xenografts. This profibrotic stem cell variant, which was shown to preexist in low quantities in normal and even fetal lungs, expressed a broad network of genes implicated in organ fibrosis and showed overlap in gene expression with abnormal epithelial signatures identified in previously published scRNA-seq studies of IPF. Drug screens highlighted specific vulnerabilities of this profibrotic variant to inhibitors of epidermal growth factor and mammalian target of rapamycin signaling as prospective therapeutic targets. This profibrotic stem cell variant in IPF was distinct from recently identified profibrotic stem cell variants in chronic obstructive pulmonary disease and may extend the notion that inappropriate accrual of minor and preexisting stem cell variants contributes to chronic lung conditions.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Miofibroblastos/patologia , Fibroblastos/patologia , Células-Tronco/metabolismo , Clonagem Molecular
4.
Respir Res ; 23(1): 349, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522710

RESUMO

BACKGROUND: Despite causing increased morbidity and mortality, pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) patients (COPD-PH) lacks treatment, due to incomplete understanding of its pathogenesis. Hypertrophy of pulmonary arterial walls and pruning of the microvasculature with loss of capillary beds are known features of pulmonary vascular remodeling in COPD. The remodeling features of pulmonary medium- and smaller vessels in COPD-PH lungs are less well described and may be linked to maladaptation of endothelial cells to chronic cigarette smoking (CS). MicroRNA-126 (miR126), a master regulator of endothelial cell fate, has divergent functions that are vessel-size specific, supporting the survival of large vessel endothelial cells and inhibiting the proliferation of microvascular endothelial cells. Since CS decreases miR126 in microvascular lung endothelial cells, we set out to characterize the remodeling by pulmonary vascular size in COPD-PH and its relationship with miR126 in COPD and COPD-PH lungs. METHODS: Deidentified lung tissue was obtained from individuals with COPD with and without PH and from non-diseased non-smokers and smokers. Pulmonary artery remodeling was assessed by ⍺-smooth muscle actin (SMA) abundance via immunohistochemistry and analyzed by pulmonary artery size. miR126 and miR126-target abundance were quantified by qPCR. The expression levels of ceramide, ADAM9, and endothelial cell marker CD31 were assessed by immunofluorescence. RESULTS: Pulmonary arteries from COPD and COPD-PH lungs had significantly increased SMA abundance compared to non-COPD lungs, especially in small pulmonary arteries and the lung microvasculature. This was accompanied by significantly fewer endothelial cell markers and increased pro-apoptotic ceramide abundance. miR126 expression was significantly decreased in lungs of COPD individuals. Of the targets tested (SPRED1, VEGF, LAT1, ADAM9), lung miR126 most significantly inversely correlated with ADAM9 expression. Compared to controls, ADAM9 was significantly increased in COPD and COPD-PH lungs, predominantly in small pulmonary arteries and lung microvasculature. CONCLUSION: Both COPD and COPD-PH lungs exhibited significant remodeling of the pulmonary vascular bed of small and microvascular size, suggesting these changes may occur before or independent of the clinical development of PH. Decreased miR126 expression with reciprocal increase in ADAM9 may regulate endothelial cell survival and vascular remodeling in small pulmonary arteries and lung microvasculature in COPD and COPD-PH.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Humanos , Hipertensão Pulmonar/patologia , Remodelação Vascular , Células Endoteliais/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Artéria Pulmonar/metabolismo , Pulmão/metabolismo , Ceramidas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Membrana/metabolismo , Proteínas ADAM/metabolismo
5.
EBioMedicine ; 86: 104351, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36375315

RESUMO

BACKGROUND: Coronavirus Disease 2019 (COVID-19) can lead to the development of acute respiratory distress syndrome (ARDS). In some patients with non-resolvable (NR) COVID-19, lung injury can progress rapidly to the point that lung transplantation is the only viable option for survival. This fatal progression of lung injury involves a rapid fibroproliferative response and takes on average 15 weeks from initial symptom presentation. Little is known about the mechanisms that lead to this fulminant lung fibrosis (FLF) in NR-COVID-19. METHODS: Using a pre-designed unbiased PCR array for fibrotic markers, we analyzed the fibrotic signature in a subset of NR-COVID-19 lungs. We compared the expression profile against control lungs (donor lungs discarded for transplantation), and explanted tissue from patients with idiopathic pulmonary fibrosis (IPF). Subsequently, RT-qPCR, Western blots and immunohistochemistry were conducted to validate and localize selected pro-fibrotic targets. A total of 23 NR-COVID-19 lungs were used for RT-qPCR validation. FINDINGS: We revealed a unique fibrotic gene signature in NR-COVID-19 that is dominated by a hyper-expression of pro-fibrotic genes, including collagens and periostin. Our results also show a significantly increased expression of Collagen Triple Helix Repeat Containing 1(CTHRC1) which co-localized in areas rich in alpha smooth muscle expression, denoting myofibroblasts. We also show a significant increase in cytokeratin (KRT) 5 and 8 expressing cells adjacent to fibroblastic areas and in areas of apparent epithelial bronchiolization. INTERPRETATION: Our studies may provide insights into potential cellular mechanisms that lead to a fulminant presentation of lung fibrosis in NR-COVID-19. FUNDING: National Institute of Health (NIH) Grants R01HL154720, R01DK122796, R01DK109574, R01HL133900, and Department of Defense (DoD) Grant W81XWH2110032 to H.K.E. NIH Grants: R01HL138510 and R01HL157100, DoD Grant W81XWH-19-1-0007, and American Heart Association Grant: 18IPA34170220 to H.K.-Q. American Heart Association: 19CDA34660279, American Lung Association: CA-622265, Parker B. Francis Fellowship, 1UL1TR003167-01 and The Center for Clinical and Translational Sciences, McGovern Medical School to X.Y.


Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Lesão Pulmonar , Humanos , Colágeno/metabolismo , COVID-19/complicações , COVID-19/patologia , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Lesão Pulmonar/metabolismo
7.
Clin Ther ; 44(5): 755-765.e6, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513911

RESUMO

PURPOSE: Bronchiolitis obliterans syndrome (BOS) is a major cause of morbidity and mortality in lung transplantation and allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Clinical guidelines recommend lung function monitoring to aid early identification of BOS, but real-world rates of pulmonary function testing (PFT) have not been studied. The purpose of this study was to quantify PFT rates in lung transplantation and allo-HSCT recipients. METHODS: This longitudinal retrospective study used US data from the IQVIA PharMetrics Plus commercial claims database (January 1, 2006-September 30, 2018) and the Medicare Limited Data Set (January 1, 2010-December 31, 2018). Study recipients had no evidence of transplantation 12 months before transplantation, which was identified by using diagnosis and procedure codes. PFTs were identified by using procedure codes. Outcomes were percentage of recipients who received ≥1 PFT in each follow-up year, including spirometry, lung diffusion capacity, lung function volume test, and plethysmography, including the average number of total and specific tests per recipient. FINDINGS: The study identified 367 commercially insured and 1776 Medicare recipients who underwent lung transplantation; 92% and 86% received ≥1 lung function test in the first year after transplantation, respectively. Among recipients observable 3 years after transplant, 85% and 83% received ≥1 PFT. Among 2187 commercially insured and 1864 Medicare recipients who underwent allo-HSCT, 44% and 36% received ≥1 lung function test in the first posttransplant year. In the third year after transplant, only 31% and 26% of observable allo-HSCT recipients underwent any PFT. IMPLICATIONS: Morbidity and mortality from BOS remain high in lung transplant and allo-HSCT recipients, but lung function testing in the first posttransplant year is not universal, with substantially lower rates among allo-HSCT recipients. Furthermore, testing rates in all cohorts declined over time. Increased and sustained monitoring could lead to earlier detection of BOS and earlier intervention and treatment.


Assuntos
Bronquiolite Obliterante , Transplante de Células-Tronco Hematopoéticas , Transplante de Pulmão , Idoso , Bronquiolite Obliterante/diagnóstico , Bronquiolite Obliterante/epidemiologia , Bronquiolite Obliterante/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Pulmão , Transplante de Pulmão/efeitos adversos , Medicare , Estudos Retrospectivos , Síndrome , Estados Unidos
8.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35420997

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options. The role of the developmental transcription factor Sine oculis homeobox homolog 1 (SIX1) in the pathophysiology of lung fibrosis is not known. IPF lung tissue samples and IPF-derived alveolar type II cells (AT2) showed a significant increase in SIX1 mRNA and protein levels, and the SIX1 transcriptional coactivators EYA1 and EYA2 were elevated. Six1 was also upregulated in bleomycin-treated (BLM-treated) mice and in a model of spontaneous lung fibrosis driven by deletion of Telomeric Repeat Binding Factor 1 (Trf1) in AT2 cells. Conditional deletion of Six1 in AT2 cells prevented or halted BLM-induced lung fibrosis, as measured by a significant reduction in histological burden of fibrosis, reduced fibrotic mediator expression, and improved lung function. These effects were associated with increased macrophage migration inhibitory factor (MIF) in lung epithelial cells in vivo following SIX1 overexpression in BLM-induced fibrosis. A MIF promoter-driven luciferase assay demonstrated direct binding of Six1 to the 5'-TCAGG-3' consensus sequence of the MIF promoter, identifying a likely mechanism of SIX1-driven MIF expression in the pathogenesis of lung fibrosis and providing a potentially novel pathway for targeting in IPF therapy.


Assuntos
Proteínas de Homeodomínio , Fibrose Pulmonar Idiopática , Animais , Fibrose , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Camundongos , Fatores de Transcrição/genética
9.
Lung ; 200(1): 11-18, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35066606

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease with a variable clinical course. Biomarkers that predict patient outcomes are needed. We leveraged data from 300 patients in the multicenter IPF-PRO Registry to determine associations between circulating proteins and the composite outcome of respiratory death or lung transplant. Plasma collected at enrollment was analyzed using aptamer-based proteomics (1305 proteins). Over a median follow-up of 30.4 months, there were 76 respiratory deaths and 26 lung transplants. In unadjusted univariable analyses, 61 proteins were significantly associated with the outcome (hazard ratio > 2 or < 0.5, corrected p ≤ 0.05). In multivariable analyses, a set of 4 clinical measures and 47 unique proteins predicted the probability of respiratory death or lung transplant with an optimism-corrected C-index of 0.76. Our results suggest that select circulating proteins strongly associate with the risk of mortality in patients with IPF and confer information independent of clinical measures.


Assuntos
Fibrose Pulmonar Idiopática , Transplante de Pulmão , Estudos de Coortes , Humanos , Proteômica , Sistema de Registros
10.
Respir Res ; 20(1): 227, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640794

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease for which diagnosis and management remain challenging. Defining the circulating proteome in IPF may identify targets for biomarker development. We sought to quantify the circulating proteome in IPF, determine differential protein expression between subjects with IPF and controls, and examine relationships between protein expression and markers of disease severity. METHODS: This study involved 300 patients with IPF from the IPF-PRO Registry and 100 participants without known lung disease. Plasma collected at enrolment was analysed using aptamer-based proteomics (1305 proteins). Linear regression was used to determine differential protein expression between participants with IPF and controls and associations between protein expression and disease severity measures (percent predicted values for forced vital capacity [FVC] and diffusion capacity of the lung for carbon monoxide [DLco]; composite physiologic index [CPI]). Multivariable models were fit to select proteins that best distinguished IPF from controls. RESULTS: Five hundred fifty one proteins had significantly different levels between IPF and controls, of which 47 showed a |log2(fold-change)| > 0.585 (i.e. > 1.5-fold difference). Among the proteins with the greatest difference in levels in patients with IPF versus controls were the glycoproteins thrombospondin 1 and von Willebrand factor and immune-related proteins C-C motif chemokine ligand 17 and bactericidal permeability-increasing protein. Multivariable classification modelling identified nine proteins that, when considered together, distinguished IPF versus control status with high accuracy (area under receiver operating curve = 0.99). Among participants with IPF, 14 proteins were significantly associated with FVC % predicted, 23 with DLco % predicted, 14 with CPI. Four proteins (roundabout homolog-2, spondin-1, polymeric immunoglobulin receptor, intercellular adhesion molecule 5) demonstrated the expected relationship across all three disease severity measures. When considered in pathways analyses, proteins associated with the presence or severity of IPF were enriched in pathways involved in platelet and haemostatic responses, vascular or platelet derived growth factor signalling, immune activation, and extracellular matrix organisation. CONCLUSIONS: Patients with IPF have a distinct circulating proteome and can be distinguished using a nine-protein profile. Several proteins strongly associate with disease severity. The proteins identified may represent biomarker candidates and implicate pathways for further investigation. TRIAL REGISTRATION: ClinicalTrials.gov (NCT01915511).


Assuntos
Fibrose Pulmonar Idiopática/sangue , Fibrose Pulmonar Idiopática/genética , Proteogenômica/métodos , Sistema de Registros , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Masculino , Pessoa de Meia-Idade , Proteômica/métodos
11.
JCI Insight ; 52019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30990794

RESUMO

Obliterative bronchiolitis (OB) is a poorly understood airway disease characterized by the generation of fibrotic bronchiolar occlusions. In the lung transplant setting, OB is a pathological manifestation of bronchiolitis obliterans syndrome (BOS), which is a major impediment to long-term recipient survival. Club cells play a key role in bronchiolar epithelial repair, but whether they promote lung transplant tolerance through preventing OB remains unclear. We determined if OB occurs in mouse orthotopic lung transplants following conditional transgene-targeted club cell depletion. In syngeneic lung transplants club cell depletion leads to transient epithelial injury followed by rapid club cell-mediated repair. In contrast, allogeneic lung transplants develop severe OB lesions and poorly regenerate club cells despite immunosuppression treatment. Lung allograft club cell ablation also triggers the recognition of alloantigens, and pulmonary restricted self-antigens reported associated with BOS development. However, CD8+ T cell depletion restores club cell reparative responses and prevents OB. In addition, ex-vivo analysis reveals a specific role for alloantigen-primed effector CD8+ T cells in preventing club cell proliferation and maintenance. Taken together, we demonstrate a vital role for club cells in maintaining lung transplant tolerance and propose a new model to identify the underlying mechanisms of OB.


Assuntos
Bronquíolos/citologia , Bronquiolite Obliterante/imunologia , Células Epiteliais/imunologia , Rejeição de Enxerto/imunologia , Transplante de Pulmão/efeitos adversos , Animais , Bronquíolos/imunologia , Bronquiolite Obliterante/patologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Rejeição de Enxerto/patologia , Humanos , Camundongos , Cultura Primária de Células , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Transplante Homólogo/efeitos adversos
12.
Proc (Bayl Univ Med Cent) ; 31(1): 81-83, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29686563

RESUMO

Lymphangioleiomyomatosis (LAM) is a rare cystic pulmonary disease that may occur in association with mutations in the tuberous sclerosis genes or arise sporadically. The histologic hallmark of the disease is the "LAM" cell, a spindled to epithelioid smooth muscle-like cell that bears morphologic and immunohistochemical resemblance to the perivascular epithelioid cell tumors (PEComas). The origin of the "LAM" cell is unknown; emerging theories suggest that a member of the PEComa family, the renal angiomyolipoma, may be the primary source and that both LAM and angiomyolipomas are associated with the genetic syndrome tuberous sclerosis. We present a young woman with LAM with an aggressive renal angiomyolipoma confirmed at autopsy.

13.
J Heart Lung Transplant ; 34(2): 247-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25455749

RESUMO

BACKGROUND: There is accumulating evidence that extracellular adenosine triphosphate (eATP) promotes many of the underlying mechanisms that exacerbate acute lung injury. However, much of these data are from inbred rodent models, indicating the need for further investigation in higher vertebrates to better establish clinical relevance. To this end we evaluated a human recombinant apyrase therapy in a canine warm pulmonary ischemia-reperfusion injury (IRI) model and measured eATP levels in human lung recipients with or without primary lung graft dysfunction (PGD). METHODS: Warm ischemia was induced for 90 minutes in the left lung of 14 mongrel dogs. Seven minutes after reperfusion, the apyrase APT102 (1 mg/kg, n = 7) or saline vehicle (n = 7) was injected into the pulmonary artery. Arterial blood gases were obtained every 30 minutes up to 180 minutes after reperfusion. Bronchioalveolar lavage fluid (BALF) was analyzed for eATP concentration, cellularity, and inflammatory mediator accumulation. Thirty bilateral human lung transplant recipients were graded for immediate early PGD and assessed for BALF eATP levels. RESULTS: APT102-treated dogs had progressively better lung function and less pulmonary edema during the 3-hour reperfusion period compared with vehicle-treated controls. Protection from IRI was observed, with lower BALF eATP levels, fewer airway leukocytes, and blunted inflammatory mediator expression. Human lung recipients with moderate to severe PGD had significantly higher eATP levels compared with recipients without this injury. CONCLUSIONS: Extracellular ATP accumulates in acutely injured canine and human lungs. Strategies that target eATP reduction may help protect lung recipients from IRI.


Assuntos
Apirase/uso terapêutico , Pneumopatias/prevenção & controle , Transplante de Pulmão , Pulmão/irrigação sanguínea , Traumatismo por Reperfusão/prevenção & controle , Animais , Modelos Animais de Doenças , Cães , Humanos , Disfunção Primária do Enxerto , Proteínas Recombinantes/uso terapêutico
14.
Blood ; 118(23): 6172-82, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21972291

RESUMO

The mechanisms by which innate immune signals regulate alloimmune responses remain poorly understood. In the present study, we show by intravital 2-photon microscopy direct interactions between graft-infiltrating neutrophils and donor CD11c(+) dendritic cells (DCs) within orthotopic lung allografts immediately after reperfusion. Neutrophils isolated from the airways of lung transplantation recipients stimulate donor DCs in a contact-dependent fashion to augment their production of IL-12 and expand alloantigen-specific IFN-γ(+) T cells. DC IL-12 expression is largely regulated by degranulation and induced by TNF-α associated with the neutrophil plasma membrane. Extended cold ischemic graft storage enhances G-CSF-mediated granulopoiesis and neutrophil graft infiltration, resulting in exacerbation of ischemia-reperfusion injury after lung transplantation. Ischemia reperfusion injury prevents immunosuppression-mediated acceptance of mouse lung allografts unless G-CSF-mediated granulopoiesis is inhibited. Our findings identify granulopoiesis-mediated augmentation of alloimmunity as a novel link between innate and adaptive immune responses after organ transplantation.


Assuntos
Células Dendríticas/citologia , Rejeição de Enxerto/imunologia , Leucopoese/imunologia , Transplante de Pulmão/imunologia , Neutrófilos/citologia , Doença Aguda , Animais , Degranulação Celular/imunologia , Membrana Celular/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Interleucina-12/metabolismo , Leucopoese/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , Traumatismo por Reperfusão/imunologia , Transdução de Sinais/imunologia , Imunologia de Transplantes/imunologia , Transplante Homólogo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Am J Respir Cell Mol Biol ; 37(6): 625-30, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17717320

RESUMO

Lung transplantation remains the only therapeutic option for many patients suffering from end-stage pulmonary disease. Long-term success after lung transplantation is severely limited by the development of bronchiolitis obliterans. The murine heterotopic tracheal transplantation model has been widely used for studies investigating pathogenesis of obliterative airway disease and immunosuppressive strategies to prevent its development. Despite its utility, this model employs proximal airway that lacks airflow and is not vascularized. We have developed a novel model of orthotopic vascularized lung transplantation in the mouse, which leads to severe vascular rejection in allogeneic strain combinations. Here we characterize differences in the fate of airway epithelial cells in nonimmunosuppressed heterotopic tracheal and vascularized lung allograft models over 28 days. Up-regulation of growth factors that are thought to be critical for the development of airway fibrosis and interstitial collagen deposition were similar in both models. However, while loss of airway epithelial cells occurred in the tracheal model, airway epithelium remained intact and fully differentiated in lung allografts, despite profound vascular rejection. Moreover, we demonstrate expression of the anti-apoptotic protein Bcl-2 in airway epithelial cells of acutely rejected lung allografts. These findings suggest that in addition to alloimmune responses, other stimuli may be required for the destruction of airway epithelial cells. Thus, the model of vascularized mouse lung transplantation may provide a new and more physiologic experimental tool to study the interaction between immune and nonimmune mechanisms affecting airway pathology in lung allografts.


Assuntos
Rejeição de Enxerto , Transplante de Pulmão , Neovascularização Fisiológica , Mucosa Respiratória/irrigação sanguínea , Mucosa Respiratória/citologia , Animais , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mucosa Respiratória/patologia , Traqueia/transplante , Transplante Homólogo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA