Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Sci Rep ; 14(1): 14307, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906931

RESUMO

Breast cancer (BC) remains a significant health concern for women globally, prompting the relentless pursuit of novel therapeutic modalities. As a traditional Chinese medicine, Boswellia carterii has been extensively used to treat various cancers, such as BC. However, the anti-BC effect and underlying mechanism of Boswellia carterii remain largely unclear. The aim of this study is to explore the therapeutic effect of Boswellia carterii n-hexane extract (BCHE) against BC as well as its underlying mechanism. The present study showed that BCHE significantly suppressed the viability of human BC cells. Moreover, BCHE exhibited potent anti-BC activity in vivo with no significant toxic effects. Additionally, BCHE induced ferroptosis via increased Transferrin expression and the intracellular accumulation of Fe2+, as well as decreased glutathione peroxidase 4 (GPX4) expression and the upregulation of reactive oxygen species (ROS)-induced lipid peroxidation in BC cells. In vivo experimental results also demonstrated that BCHE effectively induced ferroptosis through GPX4 downregulation and Transferrin upregulation in tumor-bearing mice. Overall, BCHE inhibited the growth of BC cells by inducing ferroptosis mediated by modulating the iron accumulation pathway and the lipid peroxidation pathway. Therefore, BCHE could serve as a potential ferroptosis-targeting drug for treating BC.


Assuntos
Boswellia , Neoplasias da Mama , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Extratos Vegetais , Transferrina , Ferroptose/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Animais , Transferrina/metabolismo , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular Tumoral , Boswellia/química , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Hexanos/química , Regulação para Baixo/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Camundongos Endogâmicos BALB C
2.
Pharmacol Res ; 203: 107148, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522760

RESUMO

The gut microbiota, known as the "forgotten organ" and "human second genome," comprises a complex microecosystem. It significantly influences the development of various tumors, including colorectal, liver, stomach, breast, and lung cancers, through both direct and indirect mechanisms. These mechanisms include the "gut-liver" axis, the "lung-intestine" axis, and interactions with the immune system. The intestinal flora exhibits dual roles in cancer, both promoting and suppressing its progression. Traditional Chinese medicine (TCM) can alter cancer progression by regulating the intestinal flora. It modifies the intestinal flora's composition and structure, along with the levels of endogenous metabolites, thus affecting the intestinal barrier, immune system, and overall body metabolism. These actions contribute to TCM's significant antitumor effects. Moreover, the gut microbiota metabolizes TCM components, enhancing their antitumor properties. Therefore, exploring the interaction between TCM and the intestinal flora offers a novel perspective in understanding TCM's antitumor mechanisms. This paper succinctly reviews the association between gut flora and the development of tumors, including colorectal, liver, gastric, breast, and lung cancers. It further examines current research on the interaction between TCM and intestinal flora, with a focus on its antitumor efficacy. It identifies limitations in existing studies and suggests recommendations, providing insights into antitumor drug research and exploring TCM's antitumor effectiveness. Additionally, this paper aims to guide future research on TCM and the gut microbiota in antitumor studies.


Assuntos
Microbioma Gastrointestinal , Medicina Tradicional Chinesa , Neoplasias , Humanos , Neoplasias/microbiologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Animais , Medicamentos de Ervas Chinesas/uso terapêutico
3.
Chin Med ; 19(1): 4, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183094

RESUMO

BACKGROUND: Usenamine A, a novel natural compound initially isolated from the lichen Usnea longissima, has exhibited promising efficacy against hepatoma in prior investigation. Nevertheless, the underlying mechanisms responsible for its antihepatoma effects remain unclear. Furthermore, the role of the AKT/mechanistic target of the rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3)/inhibitor of differentiation/DNA binding 1 (ID1) signaling axis in hepatocellular carcinoma (HCC), and the potential anti-HCC effects of drugs targeting this pathway are not well understood. METHODS: CCK-8 assay was used to investigate the effects of usenamine A on the proliferation of human HCC cells. Moreover, the effects of usenamine A on the invasion ability of human HCC cells were evaluated by transwell assay. In addition, expression profiling analysis, quantitative real-time PCR, immunoblotting, immunohistochemistry (IHC) analysis, RNAi, immunoprecipitation, and chromatin immunoprecipitation (ChIP) assay were used to explore the effects of usenamine A on the newly identified AKT/mTOR/STAT3/ID1 signaling axis in human HCC cells. RESULTS: Usenamine A inhibited the proliferation and invasion of human HCC cell lines (HepG2 and SK-HEP-1). Through the analysis of gene expression profiling, we identified that usenamine A suppressed the expression of ID1 in human HCC cells. Furthermore, immunoprecipitation experiments revealed that usenamine A facilitated the degradation of the ID1 protein via the ubiquitin-proteasome pathway. Moreover, usenamine A inhibited the activity of STAT3 in human HCC cells. ChIP analysis demonstrated that STAT3 positively regulated ID1 expression at the transcriptional level in human HCC cells. The STAT3/ID1 axis played a role in mediating the anti-proliferative and anti-invasive impacts of usenamine A on human HCC cells. Additionally, usenamine A suppressed the STAT3/ID1 axis through AKT/mTOR signaling in human HCC cells. CONCLUSION: Usenamine A displayed robust anti-HCC potential, partly attributed to its capacity to downregulate the AKT/mTOR/STAT3/ID1 signaling pathway and promote ubiquitin-proteasome-mediated ID1 degradation. Usenamine A has the potential to be developed as a therapeutic agent for HCC cases characterized by abnormal AKT/mTOR/STAT3/ID1 signaling, and targeting the AKT/mTOR/STAT3 signaling pathway may be a viable option for treating patients with HCC exhibiting elevated ID1 expression.

4.
Adv Sci (Weinh) ; 11(9): e2303057, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38098252

RESUMO

Soft porous organic crystals with stimuli-responsive single-crystal-to-single-crystal (SCSC) transformations are important tools for unraveling their structural transformations at the molecular level, which is of crucial importance for the rapid development of stimuli-responsive systems. Carefully balancing the crystallinity and flexibility of materials is the prerequisite to construct advanced organic crystals with SCSC, which remains challenging. Herein, a squaraine-based soft porous organic crystal (SPOC-SQ) with multiple gas-induced SCSC transformations and temperature-regulated gate-opening adsorption of various C1-C3 hydrocarbons is reported. SPOC-SQ is featured with both crystallinity and flexibility, which enable pertaining the single crystallinity of the purely organic framework during accommodating gas molecules and directly unveiling gas-framework interplays by SCXRD technique. Thanks to the excellent softness of SPOC-SQ crystals, multiple metastable single crystals are obtained after gas removals, which demonstrates a molecular-scale shape-memory effect. Benefiting from the single crystallinity, the molecule-level structural evolutions of the SPOC-SQ crystal framework during gas departure are uncovered. With the unique temperature-dependent gate-opening structural transformations, SPOC-SQ exhibits distinctly different absorption behaviors towards C3 H6 and C3 H8 , and highly efficient and selective separation of C3 H6 /C3 H8 (v/v, 50/50) is achieved at 273 K. Such advanced soft porous organic crystals are of both theoretical values and practical implications.

5.
Chin Med ; 18(1): 132, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833746

RESUMO

Ferroptosis is a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation. It can be triggered by various mechanisms, including the glutathione peroxidase 4 (GPX4)-glutathione (GSH) axis, iron metabolism, lipid metabolism, the GTP cyclohydrolase 1 (GCH1)-tetrahydrobiopterin (BH4) pathway, and the ferroptosis suppressor protein 1 (FSP1)-coenzyme Q10 axis. The redox balance is disrupted when ferroptosis occurs in cells, which is fatal to cancer cells. Additionally, some tumor-associated genes are involved in ferroptosis. Hence, targeting ferroptosis might be an effective strategy for treating cancer. Several small-molecule compounds exhibit anti-tumor effects through ferroptosis, including sorafenib and altretamine, which induce ferroptosis by inhibiting System-Xc and GPX4 respectively, but many problems, such as poor druggability, still exist. Some studies have shown that many traditional Chinese medicine (TCM) induce ferroptosis by inhibiting GPX4, solute carrier family 7 member 11 (SLC7A11), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), or by increasing the expression of Acyl-CoA synthetase long-chain family member 4 (ACSL4), transferrin (TF), and transferrin receptor 1 (TFR1). These changes can lead to the lysosomal degradation of ferritin, accumulation of iron, lipid peroxidation and the production of reactive oxygen species (ROS), which in turn can promote anti-tumor activities or synergistic effects with chemotherapeutic drugs. In this study, we elucidated the underlying mechanisms of ferroptosis, and the anti-tumor pharmacology of TCM targeting ferroptosis including prescriptions, Chinese herbs, extracts, and natural compounds. Our findings might act as valuable reference for research on anti-tumor drugs targeting ferroptosis, especially those drugs developed from TCM.

6.
J Nat Prod ; 86(9): 2122-2130, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37672645

RESUMO

The integration of NMR-metabolomic and genomic analyses can provide enhanced identification of structural properties as well as key biosynthetic information, thus achieving the targeted discovery of new natural products. For this purpose, NMR-based metabolomic profiling of the marine-derived Streptomyces sp. S063 (CGMCC 14582) was performed, by which N-methylated peptides possessing unusual negative 1H NMR chemical shift values were tracked. Meanwhile, genome mining of this strain revealed the presence of an unknown NRPS gene cluster (len) with piperazic-acid-encoding genes (lenE and lenF). Under the guidance of the combined information, two cyclic decapeptides, lenziamides D1 (1) and B1 (2), were isolated from Streptomyces sp. S063, which contains piperazic acids with negative 1H NMR values. The structures of 1 and 2 were determined by extensive spectroscopic analysis combined with Marfey's method and ECD calculations. Furthermore, we provided a detailed model of lenziamide (1 and 2) biosynthesis in Streptomyces sp. S063. In the cytotoxicity evaluation, 1 and 2 showed moderate growth inhibition against the human cancer cells HEL, H1975, H1299, and drug-resistant A549-taxol with IC50 values of 8-24 µM.


Assuntos
Produtos Biológicos , Streptomyces , Humanos , Imageamento por Ressonância Magnética , Metabolômica , Genômica , Produtos Biológicos/farmacologia , Streptomyces/genética
7.
Am J Chin Med ; 51(7): 1627-1651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638827

RESUMO

The tumor microenvironment (TME) plays an important role in the development of tumors. Immunoregulatory cells and cytokines facilitate cancer cells to avoid immune surveillance. Overexpression of immune checkpoint molecules such as CTLA-4 and PD-1/PD-L1 inhibits immune function and enables cancer cells to avoid clearance by the immune system. Thus, minimizing tumor immunosuppression could be an important strategy for cancer therapy. Currently, many immune checkpoint-targeted drugs, such as PD-1/PD-L1 inhibitors, have been approved for marketing and have shown unique advantages in the clinical treatment of cancers. The concept of "strengthening resistance to eliminate pathogenic factors" in traditional Chinese medicine (TCM) is consistent with the immunotherapy of cancer. According to previous studies, the role of TCM in tumor immunotherapy is mainly associated with the positive regulation of natural killer cells, CD8/CD4 T cells, dendritic cells, M2 macrophages, interleukin-2, tumor necrosis factor-[Formula: see text], and IFN-[Formula: see text], as well as with the negative regulation of Tregs, myeloid-derived suppressor cells, cancer-associated fibroblasts, PD-1/PD-L1, transforming growth factor-[Formula: see text], and tumor necrosis factor-[Formula: see text]. This paper summarizes the current research on the effect of TCM targeting the TME, and further introduces the research progress on studying the effects of TCM on immune checkpoints. Modern pharmacological studies have demonstrated that TCM can directly or indirectly affect the TME by inhibiting the overexpression of immune checkpoint molecules and enhancing the efficacy of tumor immunotherapy. TCM with immunomodulatory stimulation could be the key factor to achieve benefits from immunotherapy for patients with non-inflammatory, or "cold", tumors.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/farmacologia , Medicina Tradicional Chinesa , Proteínas de Checkpoint Imunológico/farmacologia , Receptor de Morte Celular Programada 1 , Neoplasias/patologia , Imunoterapia , Fatores de Necrose Tumoral/farmacologia , Microambiente Tumoral
8.
Phytomedicine ; 116: 154895, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37229890

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a major cause of cancer-associated mortality worldwide. Myosin-9's role in HCC and the anti-HCC effect of the drugs targeting Myosin-9 remain poorly understood so far. Candidate antitumor agents obtained from natural products have attracted worldwide attention. Usenamine A is a novel product, which was first extracted in our laboratory from the lichen Usnea longissima. According to published reports, usenamine A exhibits good antitumor activity, while the mechanisms underlying its antitumor effects remain to be elucidated. PURPOSE: The present study investigated the anti-hepatoma effect of usenamine A and the underlying molecular mechanisms, along with evaluating the therapeutic potential of targeting Myosin-9 in HCC. METHODS: The CCK-8, Hoechst staining, and FACS assays were conducted in the present study to investigate how usenamine A affected the growth and apoptosis of human hepatoma cells. Moreover, TEM, acridine orange staining, and immunofluorescence assay were performed to explore the induction of autophagy by usenamine A in human hepatoma cells. The usenamine A-mediated regulation of protein expression in human hepatoma cells was analyzed using immunoblotting. MS analysis, SPR assay, CETSA, and molecular modeling were performed to identify the direct target of usenamine A. Immunofluorescence assay and co-immunoprecipitation assay were conducted to determine whether usenamine A affected the interaction between Myosin-9 and the actin present in human hepatoma cells. In addition, the anti-hepatoma effect of usenamine A was investigated in vivo using a xenograft tumor model and the IHC analysis. RESULTS: The present study initially revealed that usenamine A could suppress the proliferation of HepG2 and SK-HEP-1 cells (hepatoma cell lines). Furthermore, usenamine A induced cell apoptosis via the activation of caspase-3. In addition, usenamine A enhanced autophagy. Moreover, usenamine A administration could dramatically suppress the carcinogenic ability of HepG2 cells, as evidenced by the nude mouse xenograft tumor model. Importantly, it was initially revealed that Myosin-9 was a direct target of usenamine A. Usenamine A could block cytoskeleton remodeling through the disruption of the interaction between Myosin-9 and actin. Myosin-9 participated in suppressing proliferation while inducing apoptosis and autophagy in response to treatment with usenamine A. In addition, Myosin-9 was revealed as a potential oncogene in HCC. CONCLUSIONS: Usenamine A was initially revealed to suppress human hepatoma cells growth by interfering with the Myosin-9/actin-dependent cytoskeleton remodeling through the direct targeting of Myosin-9. Myosin-9 is, therefore, a promising candidate target for HCC treatment, while usenamine A may be utilized as a possible anti-HCC therapeutic, particularly in the treatment of HCC with aberrant Myosin-9.


Assuntos
Morte Celular Autofágica , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/patologia , Actinas , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Hepáticas/patologia , Apoptose , Células Hep G2 , Proteínas do Citoesqueleto/farmacologia , Proteínas do Citoesqueleto/uso terapêutico , Citoesqueleto/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Org Chem ; 88(11): 7096-7103, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37178146

RESUMO

Three quinone-terpenoid alkaloids, alashanines A-C (1-3), possessing an unprecedented 6/6/6 tricyclic conjugated backbone and quinone-quinoline-fused characteristic, were isolated from the peeled stems of Syringa pinnatifolia. Their structures were elucidated by analysis of extensive spectroscopic data and quantum chemical calculations. A hypothesis of biosynthesis pathways for 1-3 was proposed on the basis of the potential precursor iridoid and benzoquinone. Compound 1 exhibited antibacterial activities against Bacillus subtilis and cytotoxicity against HepG2 and MCF-7 human cancer cell lines. The results of the cytotoxic mechanism revealed that compound 1 induced apoptosis of HepG2 cells through activation of ERK.


Assuntos
Alcaloides , Antineoplásicos , Syringa , Humanos , Syringa/química , Terpenos , Estrutura Molecular , Extratos Vegetais , Alcaloides/farmacologia , Benzoquinonas , Quinonas
10.
Biochem Pharmacol ; 211: 115518, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966937

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and is extremely malignant in nature. It is an important way to discover anti-cancer drugs from natural products at present. (R)-7,3'-dihydroxy-4'-methoxy-8-methylflavane (DHMMF), a natural flavonoid, was isolated from Resina Draconis which is the red resin from Dracaena cochinchinensis (Lour.) S. C. Chen. However, the anti-hepatoma effect and underlying mechanisms of DHMMF remain unclear. Herein, we demonstrated that DHMMF treatment significantly inhibited the proliferation of human hepatoma HepG2 and SK-HEP-1 cells. The IC50 value of DHMMF for HepG2 and SK-HEP-1 cells were 0.67 µM and 0.66 µM, respectively, while the IC50 value of DHMMF for human normal liver LO2 cells was 120.60 µM. DHMMF induced DNA damage, apoptosis, and G2/M phase arrest in HepG2 and SK-HEP-1 cells. Furthermore, the anti-proliferative and pro-apoptotic effects of DHMMF in human hepatoma cells were mediated by the upregulation of p21. Importantly, DHMMF exhibited potent anti-HCC efficacy in a xenograft mice model and an orthotopic mice model of liver cancer. Additionally, the combined administration of DHMMF and polo-like kinase 1 (PLK1) inhibitor BI 6727 showed a synergistic anti-HCC efficacy. Collectively, we demonstrated that DHMMF treatment induced apoptosis and G2/M phase arrest via DNA damage-driven upregulation of p21 expression in human hepatoma cells. DHMMF may serve as a promising drug candidate for HCC treatment, especially for patients of HCC with low p21 expression. Our results also suggested that DHMMF treatment in combination with PLK1 inhibitor may serve as a potential treatment strategy for patients with HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Regulação para Cima , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Proliferação de Células , Células Hep G2 , Antineoplásicos/farmacologia , Apoptose , Dano ao DNA , Divisão Celular
11.
Phytother Res ; 37(2): 689-701, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36245270

RESUMO

Gastric cancer (GC) is a malignancy with high morbidity and mortality. Chinese dragon's blood is a traditional Chinese medicine derived from the red resin of Dracaena cochinchinensis (Lour.) S. C. Chen. However, the antigastric cancer effect of Chinese dragon's blood has not yet been reported. Herein, we demonstrated that Chinese dragon's blood ethyl acetate extract (CDBEE) suppressed the proliferative and metastatic potential of human gastric cancer MGC-803 and HGC-27 cells. CDBEE suppressed epithelial-mesenchymal transition in MGC-803 and HGC-27 cells. Moreover, CDBEE induced apoptotic and autophagic cell death in MGC-803 and HGC-27 cells. The cytotoxicity of CDBEE in human gastric epithelial GES-1 cells was dramatically weaker than that in human gastric cancer cells. Mechanistically, the activation of the mitogen-activated protein kinase (MAPK) signalling pathway was involved in the growth inhibition of MGC-803 and HGC-27 cells by CDBEE. Additionally, CDBEE-induced autophagic cell death was mediated by downregulation of the mammalian target of rapamycin (mTOR)-Beclin1 signalling cascade and upregulation of the ATG3/ATG7-LC3 signalling cascade. Importantly, CDBEE exhibited potent anti-GC efficacy in vivo without obvious toxicity or side effects. Therefore, CDBEE may be a promising candidate drug for the treatment of gastric cancer, especially for GC patients with aberrant MAPK signalling or mTOR signalling.


Assuntos
Dracaena , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Proteína Beclina-1/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sirolimo , Regulação para Baixo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Dracaena/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Autofagia
12.
Front Public Health ; 10: 903036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769791

RESUMO

Objective: To compare the predictive performance of five handgrip strengths for cardiovascular disease (CVD) risk factors. Methods: A total of 804 Chinese middle-aged community residents' health medical examinations were collected. The absolute handgrip strength was denoted as HGS. HGS/body weight (HGS/BW), HGS/body mass index (HGS/BMI), HGS/lean body mass (HGS/LBM), and HGS/muscle mass (HGS/MM) represented relative handgrip strength (RHGS). To assess predictive performance, receiver operating characteristic (ROC) curves and the area under the curve (AUC) were constructed. Results: HGS was not associated with most CVD risk biomarkers; however, RHGS showed a negative correlation trend after controlling for covariates (sex, age, smoking, and exercise). HGS/BMI and HGS/BW had better AUCs for predicting CVD risk factors than HGS/LBM or HGS/MM. HGS/BMI and HGS/BW can successfully predict all CVD risk factors in men with AUCs 0.55-0.65; similarly, women may effectively predict arteriosclerosis, hyperglycemia, hyperuricemia, and metabolic syndrome with AUCs 0.59-0.64, all p < 0.05. The optimal HGS/BW cut-off points for identifying different CVD risk factors were 0.59-0.61 in men and 0.41-0.45 in women, while the HGS/BMI were 1.75-1.79 in men and 1.11-1.15 in women. Conclusions: Almost all CVD risk biomarkers and CVD risk factors were unrelated to HGS. There is, however, a significant inverse relationship between RHGS and CVD risk factors. HGS/BMI or HGS/BW should be recommended to be the best choice for predicting the risk of CVD risk factors in five expressions of handgrip strength. We also acquired the recommended optimal cut-off points of HGS/BMI and HGS/BW for predicting CVD risk factors.


Assuntos
Doenças Cardiovasculares , Força da Mão , Biomarcadores , Peso Corporal , Doenças Cardiovasculares/epidemiologia , China/epidemiologia , Feminino , Força da Mão/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
13.
Biosensors (Basel) ; 12(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35624649

RESUMO

Photodynamic therapy (PDT) is a non-invasive approach for tumor elimination that is attracting more and more attention due to the advantages of minimal side effects and high precision. In typical PDT, reactive oxygen species (ROS) generated from photosensitizers play the pivotal role, determining the efficiency of PDT. However, applications of traditional PDT were usually limited by the aggregation-caused quenching (ACQ) effect of the photosensitizers employed. Fortunately, photosensitizers with aggregation-induced emission (AIE-active photosensitizers) have been developed with biocompatibility, effective ROS generation, and superior absorption, bringing about great interest for applications in oncotherapy. In this review, we review the development of AIE-active photosensitizers and describe molecule and aggregation strategies for manipulating photosensitization. For the molecule strategy, we describe the approaches utilized for tuning ROS generation by attaching heavy atoms, constructing a donor-acceptor effect, introducing ionization, and modifying with activatable moieties. The aggregation strategy to boost ROS generation is reviewed for the first time, including consideration of the aggregation of photosensitizers, polymerization, and aggregation microenvironment manipulation. Moreover, based on AIE-active photosensitizers, the cutting-edge applications of PDT with NIR irradiated therapy, activatable therapy, hypoxic therapy, and synergistic treatment are also outlined.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio
14.
Bioorg Chem ; 125: 105879, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35636096

RESUMO

A phytochemical investigation guided by 1H NMR and LC-MS data on the ethanol extract of Syringa pinnatifolia stems led to the isolation of 11 new dimeric eremophilane sesquiterpenoids, namely, syringenes A-K (1-11) and one known analog (12, syringene L). These structures were elucidated by extensive analysis of spectroscopic data, single-crystal X-ray diffraction, and computational methods. Biological assays revealed that 1-12 exhibited different degrees of anti-inflammatory effects, and 5 and 6 showed significant cytotoxicity against human hepatoma HepG2 cells with IC50 values of 12.3 and 12.9 µM, respectively. Furthermore, flow cytometry assays and western blot analysis revealed that 5 and 6 promoted the apoptosis of HepG2 cells by activating ERK. Finally, the molecular docking analysis implied that the carbonyl and hydroxy groups at the C-11/C-6' of 5 and 6 had a good binding affinity with ERK.


Assuntos
Sesquiterpenos , Syringa , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Sesquiterpenos Policíclicos , Sesquiterpenos/química , Syringa/química
15.
Zhongguo Zhong Yao Za Zhi ; 47(23): 6457-6465, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36604892

RESUMO

The purpose of this study was to investigate the effect of Huaier extract supernatant(HES) on the proliferation, apoptosis, autophagy, and migration of human gastric cancer HGC-27 and MGC-803 cells and its molecular mechanisms. The main components in HES were preliminarily analyzed by high-performance liquid chromatography-mass spectrometry(HPLC-MS). Methyl thiazolyl tetrazolium(MTT) assay, colony formation assay, and 5-ethynyl-2'-deoxyuridine(EdU) staining assay were used to explore the effect of HES on the proliferation of human gastric cancer HGC-27 and MGC-803 cells. Hoechst staining and flow cytometry assay were used to determine the effect of HES on apoptosis of human gastric cancer HGC-27 and MGC-803 cells. Acridine orange staining and cell scratch assay were used to determine the effect of HES on autophagy and migration of human gastric cancer HGC-27 and MGC-803 cells, respectively. Western blot was used to investigate the regulatory effect of HES on the expression levels of proteins related to apoptosis, epithelial-mesenchymal transition(EMT), and signaling pathways in human gastric cancer HGC-27 and MGC-803 cells. The results showed that HES mainly contained some components with high polarities. HES significantly reduced the cell viability of human gastric cancer cells in a dose-and time-dependent manner. The IC_(50 )values after 48 h of HES treatment in human gastric cancer HGC-27 and MGC-803 cells were 7.56 and 10.77 g·L~(-1), respectively. Meanwhile, HES inhibited the colony-forming ability and short-term proliferation of human gastric cancer cells. The apoptosis rates of HGC-27 and MGC-803 cells treated with 8 g·L~(-1) HES for 72 h were 62.13%±8.92% and 54.50%±3.26%, respectively. HES also promoted autophagy in human gastric cancer cells and impaired their migration ability in vitro. Moreover, HES up-regulated the cleavage of the apoptosis marker poly ADP-ribose polymerase(PARP) and the protein expression level of the epithelial cell marker E-cadherin, and down-regulated the protein levels of phosphorylated-mammalian target of rapamycin(p-mTOR), phosphorylated-S6(p-S6), and phosphorylated-extracellular signal-regulated kinase(p-ERK) in human gastric cancer cells. Therefore, HES is one of the effective anti-tumor components of Huaier, which inhibits the proliferation and migration of human gastric cancer cells, and induces apoptosis and autophagy. Moreover, the mTOR signal and ERK signal may be involved in the anti-gastric cancer effect of HES. This study provides novel references for the in-depth research and clinical application of Huaier. It is also of great significance to promote the scientific development and utilization of Huaier.


Assuntos
Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Gástricas/patologia , Apoptose , Serina-Treonina Quinases TOR/metabolismo
16.
Nat Prod Res ; 35(9): 1544-1549, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33938336

RESUMO

One new secoiridoid compound swertiamarin B (1), along with a known compound lytanthosalin (2), were isolated from ethanol extract of the aerial parts of Swertia mussotii. Their structures were elucidated by the detailed analysis of comprehensive spectroscopic data. All compounds were first isolated from the Swertia genus. Their antitumor activities were evaluated for four human tumor cell lines (HCT-116, HepG2, MGC-803 and A549). Compounds 1 and 2 showed excellent cytotoxic activities toward the MGC-803 cell lines with IC50 values 3.61 and 12.04 µM, respectively.


Assuntos
Iridoides/isolamento & purificação , Iridoides/farmacologia , Componentes Aéreos da Planta/química , Swertia/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50 , Glucosídeos Iridoides/química , Glucosídeos Iridoides/isolamento & purificação , Glucosídeos Iridoides/farmacologia , Iridoides/química , Extratos Vegetais/química , Espectroscopia de Prótons por Ressonância Magnética , Pironas/química , Pironas/isolamento & purificação , Pironas/farmacologia
17.
Zhongguo Zhong Yao Za Zhi ; 46(8): 2037-2044, 2021 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-33982517

RESUMO

As a traditional Chinese medicine, Chinese dragon's blood has multiple effects, such as activating blood to remove blood stasis, softening and dispelling stagnation, astringent and hemostasis, clearing swelling and relieving pain, regulating menstruation and rectifying the blood, so it is called "an effective medicine of promoting blood circulation". It has been widely used clinically to treat a variety of diseases. With the further research on Chinese dragon's blood, its anti-tumor medicinal value is gradually emerging. Modern pharmacological studies have shown that Chinese dragon's blood exerts anti-tumor effects mainly by inhibiting cell proliferation, inducing apoptosis, inducing DNA damage and cell cycle arrest, inducing senescence and autophagy of tumor cells, inhibiting metastasis and angiogenesis, as well as reversing multidrug resistance. This article focuses on the research progress on anti-tumor effects of Chinese dragon's blood extract and its chemical components, with a view to provide new references for the in-depth research and reasonable utilization of Chinese dragon's blood.


Assuntos
Dracaena , China , Feminino , Extratos Vegetais , Resinas Vegetais
18.
Zhongguo Zhong Yao Za Zhi ; 45(15): 3700-3706, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-32893561

RESUMO

This study aims to investigate the effect of Huaier aqueous extract on the growth and metastasis of human non-small cell lung cancer NCI-H1299 cells and its underlying mechanisms. MTT assay was used to detect the effect of Huaier aqueous extract on the proliferation of NCI-H1299 cells. Flow cytometry was used to examine the effect of Huaier aqueous extract on the apoptosis, cell cycle, and ROS level of NCI-H1299 cells. Wound healing assay was used to evaluate the effect of Huaier aqueous extract on the migration ability of NCI-H1299 cells. Western blot was used to detect the levels of proteins involving apoptosis, epithelial-mesenchymal transition(EMT), and MAPK signaling pathway in NCI-H1299 cells exposed to Huaier aqueous extract. The results showed that Huaier aqueous extract inhibited the proliferation of NCI-H1299 cells, and induced cell-cycle arrest at the phase S. Huaier aqueous extract promoted the apoptosis of NCI-H1299 cells by down-regulating the expression of anti-apoptotic protein Bcl-2. Moreover, Huaier aqueous extract increased ROS level and induced ferroptosis in NCI-H1299 cells. EMT played a critical role in cancer metastasis. Huaier aqueous extract reduced the migration ability of NCI-H1299 cells by inhibiting EMT of NCI-H1299 cells. In addition, this study revealed that Huaier aqueous extract inhibited MAPK signaling pathway in human non-small cell lung cancer NCI-H1299 cells, which may be one of Huaier's mechanisms in inhibiting growth and metastasis of NCI-H1299 cells. This study provides a new theoretical basis for the clinical treatment of lung cancer with Huaier, and important reference significance for further studies on the anti-tumor mechanisms of Huaier.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Misturas Complexas , Humanos , Trametes
19.
Biomark Med ; 14(8): 675-682, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32613842

RESUMO

Aim: The discrimination of renal cell carcinoma from renal angiomyolipoma (RAML) is crucial for the effective treatment of each. Materials & methods: Serum samples were analyzed by nuclear magnetic resonance spectroscopy-based metabolomics and a number of metabolites were further quantified by HPLC-UV. Results: Clear-cell renal carcinoma (ccRCC) was characterized by drastic disruptions in energy, amino acids, creatinine and uric acid metabolic pathways. A logistic model for the differential diagnosis of RAML from ccRCC was established using the combination of serum levels of uric acid, the ratio of uric acid to hypoxanthine and the ratio of hypoxanthine to creatinine as variables with area under the curve of the receiver operating characteristic curve value of 0.907. Conclusion: Alterations in serum purine metabolites may be used as potential metabolic markers for the differential diagnosis of ccRCC and RAML.


Assuntos
Angiomiolipoma/sangue , Biomarcadores Tumorais/sangue , Carcinoma de Células Renais/sangue , Neoplasias Renais/sangue , Metabolômica/métodos , Adulto , Idoso , Angiomiolipoma/diagnóstico , Angiomiolipoma/metabolismo , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Creatinina/sangue , Diagnóstico Diferencial , Feminino , Humanos , Hipoxantina/sangue , Neoplasias Renais/diagnóstico , Neoplasias Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Espectroscopia de Prótons por Ressonância Magnética/métodos , Ácido Úrico/sangue , Xantina/sangue
20.
Front Pharmacol ; 11: 669, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477135

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies, which ranks the third leading cause of cancer-related death worldwide. The screening of anti-HCC drug with high efficiency and low toxicity from traditional Chinese medicine (TCM) has attracted more and more attention. As a TCM, Chinese dragon's blood has been used for the treatment of cardiovascular illness, gynecological illness, skin disorder, otorhinolaryngological illness, and diabetes mellitus complications for many years. However, the anti-tumor effect and underlying mechanisms of Chinese dragon's blood remain ill-defined. Herein we have revealed that Chinese dragon's blood EtOAc extract (CDBEE) obviously suppressed the growth of human hepatoma HepG2 and SK-HEP-1 cells. Moreover, CDBEE inhibited the migration and invasion of HepG2 and SK-HEP-1 cells. Additionally, CDBEE displayed good in vitro anti-angiogenic activity. Importantly, CDBEE treatment significantly blunted the oncogenic capability of HepG2 cells in nude mice. Mechanistically, CDBEE inhibited Smad3 expression in human hepatoma cells and tumor tissues from nude mice. Using RNA interference, we demonstrated that CDBEE exerted anti-hepatoma activity partially through down-regulation of Smad3, one of major members in TGF-ß/Smad signaling pathway. Therefore, CDBEE may be a promising candidate drug for HCC treatment, especially for liver cancer with aberrant TGF-ß/Smad signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA