Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Andrology ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506240

RESUMO

BACKGROUND: Like the coronavirus disease 2019, the hepatitis B virus is also wreaking havoc worldwide, which has infected over 2 billion people globally. Using an experimental animal model, our previous research observed that the hepatitis B virus genes integrated into human spermatozoa can replicate and express after being transmitted to embryos. However, as of now, this phenomenon has not been confirmed in clinical data from patients. OBJECTIVES: To explore the integration of the hepatitis B virus into patients' sperm genome and its potential clinical risks. MATERIALS AND METHODS: Forty-eight patients with chronic hepatitis B virus infection were categorized into two groups: Test Group-1 comprised 23 patients without integration of hepatitis B virus DNA within the sperm genome. Test Group-2 comprised 25 patients with integration of hepatitis B virus DNA within the sperm genome. Forty-eight healthy male donors were included as control. The standard semen parameter analysis, real-time polymerase chain reaction, quantitative real-time polymerase chain reaction, sperm chromatin structure assay, fluorescence in situ hybridization, and immunofluorescence assays were utilized. RESULTS: The difference in the median copy number of hepatitis B virus DNA per mL of sera between Test Group-1 and Group-2 was not statistically significant. In Test Group-2, the integration rate of hepatitis B virus DNA was 0.109%, which showed a significant correlation with the median copy number of hepatitis B virus DNA in motile spermatozoa (1.18 × 103 /mL). Abnormal semen parameters were found in almost all these 25 patients. The integrated hepatitis B virus S, C, X, and P genes were detected to be introduced into sperm-derived embryos through fertilization and retained their function in replication, transcription, and translation. CONCLUSION: Our findings suggest that hepatitis B virus infection can lead to sperm quality deterioration and reduced fertilization capacity. Furthermore, viral integration causes instability in the sperm genome, increasing the potential risk of termination, miscarriage, and stillbirth. This study identified an unconventional mode of hepatitis B virus transmission through genes rather than virions. The presence of viral sequences in the embryonic genome poses a risk of liver inflammation and cancer.

2.
Andrology ; 9(3): 944-955, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33382193

RESUMO

BACKGROUND: Hepatitis B virus (HBV) was found to exist in semen and male germ cells of patients with chronic HBV infection. Our previous studies demonstrated that HBV surface protein (HBs) could induce sperm dysfunction by activating a calcium signaling cascade and triggering caspase-dependent apoptosis. However, the relationship between sperm dysfunction caused by HBs and caspase-independent apoptosis has not been investigated. OBJECTIVES: To evaluate the effects of HBs exposure on sperm dysfunction by activating caspase-independent apoptosis. MATERIALS AND METHODS: Spermatozoa were exposed to HBs at concentrations of 0, 25, 50, and 100 µg/mL for 3 h. Flow cytometry, qRT-PCR, immunofluorescence assay, ELISA, and zona-free hamster oocyte penetration assays were performed. RESULTS: With increasing concentrations of HBs, various parameters of the spermatozoa changed. The number of Bcl2-positive cells declined and that of both Bax-positive cells and Apaf-1-positive cells increased. The transcription level of Bcl2 increased and that of both Bax and Apaf-1 declined. The average levels of AIF and Endo G declined in mitochondria and increased in the cytoplasm and nucleus. The sperm DNA fragmentation index increased. The mean percentages of live spermatozoa declined and that of both injured and dead spermatozoa increased; and the sperm penetration rate declined. For the aforementioned parameters, the differences between the test and the control groups were statistically significant. CONCLUSION: HBs exposure can activate the Bax/Bcl2 signaling cascade that triggers AIF/Endo G-mediated apoptosis, resulting in sperm DNA fragmentation, sperm injury, and death, and a decrease in the sperm fertilizing capacity. This new knowledge will help to evaluate the negative impact of HBV on male fertility in HBV-infected patients.


Assuntos
Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espermatozoides/metabolismo , Fator de Indução de Apoptose/metabolismo , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Endodesoxirribonucleases/metabolismo , Regulação da Expressão Gênica , Voluntários Saudáveis , Humanos , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA