Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Adv Res ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879122

RESUMO

INTRODUCTION: Metabolic inflammation (metaflammation) in obesity is primarily initiated by proinflammatory macrophage infiltration into adipose tissue. SelenoM contributes to the modulation of antioxidative stress and inflammation in multiple pathological processes; however, its roles in metaflammation and the proinflammatory macrophage (M1)-like state in adipose tissue have not been determined. OBJECTIVES: We hypothesize that SelenoM could effectively regulate metaflammation via the Hippo-YAP/TAZ-ROS signaling axis in obesity derived from a high-fat diet. METHODS: Morphological changes in adipose tissue were examined by hematoxylin-eosin (H&E) staining and fluorescence microscopy. The glucose tolerance test (GTT) and insulin tolerance test (ITT) were used to evaluate the impact of SelenoM deficiency on blood glucose levels. RNA-Seq analysis, LC-MS analysis, Mass spectrometry analysis and western blotting were performed to detect the levels of genes and proteins related to glycolipid metabolism in adipose tissue. RESULTS: Herein, we evaluated the inflammatory features and metabolic microenvironment of mice with SelenoM-deficient adipose tissues by multi-omics analyses. The deletion of SelenoM resulted in glycolipid metabolic disturbances and insulin resistance, thereby accelerating weight gain, adiposity, and hyperglycemia. Mice lacking SelenoM in white adipocytes developed severe adipocyte hypertrophy via impaired lipolysis. SelenoM deficiency aggravated the generation of ROS by reducing equivalents (NADPH and glutathione) in adipocytes, thereby promoting inflammatory cytokine production and the M1-proinflammatory reaction, which was related to a change in nuclear factor kappa-B (NF-κB) levels in macrophages. Mechanistically, SelenoM deficiency promoted metaflammation via Hippo-YAP/TAZ-ROS-mediated transcriptional regulation by targeting large tumor suppressor 2 (LATS2). Moreover, supplementation with N-acetyl cysteine (NAC) to reduce excessive oxidative stress partially rescued adipocyte inflammatory responses and macrophage M1 activation. CONCLUSION: Our data indicate that SelenoM ameliorates metaflammation mainly via the Hippo-YAP/TAZ-ROS signaling axis in obesity. The identification of SelenoM as a key regulator of metaflammation presents opportunities for the development of novel therapeutic interventions targeting adipose tissue dysfunction in obesity.

2.
Adv Sci (Weinh) ; 11(28): e2404073, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38757622

RESUMO

Ferroptosis plays important roles both in normal physiology and multiple human diseases. It is well known that selenoprotein named glutathione peroxidase 4 (GPX4) is a crucial regulator for ferroptosis. However, it remains unknown whether other selenoproteins responsible for the regulation of ferroptosis, particularly in gut diseases. In this study, it is observed that Selenoprotein I (Selenoi) prevents ferroptosis by maintaining ether lipids homeostasis. Specific deletion of Selenoi in intestinal epithelial cells induced the occurrence of ferroptosis, leading to impaired intestinal regeneration and compromised colonic tumor growth. Mechanistically, Selenoi deficiency causes a remarkable decrease in ether-linked phosphatidylethanolamine (ePE) and a marked increase in ether-linked phosphatidylcholine (ePC). The imbalance of ePE and ePC results in the upregulation of phospholipase A2, group IIA (Pla2g2a) and group V (Pla2g5), as well as arachidonate-15-lipoxygenase (Alox15), which give rise to excessive lipid peroxidation. Knockdown of PLA2G2A, PLA2G5, or ALOX15 can reverse the ferroptosis phenotypes, suggesting that they are downstream effectors of SELENOI. Strikingly, GPX4 overexpression cannot rescue the ferroptosis phenotypes of SELENOI-knockdown cells, while SELENOI overexpression can partially rescue GPX4-knockdown-induced ferroptosis. It suggests that SELENOI prevents ferroptosis independent of GPX4. Taken together, these findings strongly support the notion that SELENOI functions as a novel suppressor of ferroptosis during colitis and colon tumorigenesis.


Assuntos
Colite , Neoplasias Colorretais , Ferroptose , Selenoproteínas , Ferroptose/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Camundongos , Animais , Selenoproteínas/metabolismo , Selenoproteínas/genética , Colite/metabolismo , Colite/genética , Humanos , Modelos Animais de Doenças , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Transdução de Sinais/genética
4.
Cell Mol Immunol ; 20(7): 739-776, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37198402

RESUMO

Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.


Assuntos
COVID-19 , Medicina de Precisão , Humanos , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , COVID-19/genética , Quimiocinas/genética , Quimiocinas/metabolismo , Epigênese Genética
5.
Acta Pharm Sin B ; 13(5): 2086-2106, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250150

RESUMO

As confusion mounts over RNA isoforms involved in phenotypic plasticity, aberrant CpG methylation-mediated disruption of alternative splicing is increasingly recognized as a driver of intratumor heterogeneity (ITH). Protease serine 3 (PRSS3), possessing four splice variants (PRSS3-SVs; PRSS3-V1-V4), is an indispensable trypsin that shows paradoxical effects on cancer development. Here, we found that PRSS3 transcripts and their isoforms were divergently expressed in lung cancer, exhibiting opposing functions and clinical outcomes, namely, oncogenic PRSS3-V1 and PRSS3-V2 versus tumor-suppressive PRSS3-V3, by targeting different downstream genes. We identified an intragenic CpG island (iCpGI) in PRSS3. Hypermethylation of iCpGI was mediated by UHRF1/DNMT1 complex interference with the binding of myeloid zinc finger 1 (MZF1) to regulate PRSS3 transcription. The garlic-derived compound diallyl trisulfide cooperated with 5-aza-2'-deoxycytidine to exert antitumor effects in lung adenocarcinoma cells through site-specific iCpGI demethylation specifically allowing MZF1 to upregulate PRSS3-V3 expression. Epigenetic silencing of PRSS3-V3 via iCpGI methylation (iCpGIm) in BALF and tumor tissues was associated with early clinical progression in patients with lung cancer but not in those with squamous cell carcinoma or inflammatory disease. Thus, UHRF1/DNMT1-MZF1 axis-modulated site-specific iCpGIm regulates divergent expression of PRSS3-SVs, conferring nongenetic functional ITH, with implications for early detection of lung cancer and targeted therapies.

6.
Oncol Lett ; 25(5): 205, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37123022

RESUMO

The objective of the present study was to investigate the role of postoperative radiotherapy (PORT) after radical resection of stage IIIA-N2 non-small cell lung cancer (NSCLC). Subgroups of patients who benefited from PORT were evaluated. A retrospective review of 288 consecutive patients with resected pIIIA-N2 NSCLC at Beijing Chest Hospital (Beijing, China) was performed. Of these patients, 61 received PORT. The 288 patients were divided into PORT and non-PORT groups according to the treatment received. The baseline characteristics of the two patient groups were balanced using propensity score-matching (PSM; 1:1 matching). In total, 60 patients in the PORT group and 60 patients in the non-PORT group were matched. After PSM, the median survival time of the matched patients was 53 months. The 1-, 3- and 5-year overall survival (OS) rates of the PORT patient group were 95.0, 63.2 and 48.2%, respectively, while those of the non-PORT group were 86.7, 58.3 and 34.5%, respectively, and there was no significant difference between the two groups (P=0.056). The 5-year local recurrence-free survival (LRFS) rate in the PORT group was significantly improved (P=0.001). The effects of PORT on OS and LRFS rates were analysed in patients with different clinicopathological features. For subgroups with multiple N2 stations, N2 positive lymph nodes ≥4 and squamous cell carcinoma, PORT significantly increased the OS and LRFS rates (P<0.05). In conclusion, there was no statistically significant improvement in the 5-year OS rate with PORT overall, but there may be subgroups, such as patients with multiple N2 stations, N2 positive nodes ≥4 and squamous cell carcinoma histology, that could be explored as potentially benefitting from improved 5-year OS and LRFS rates with PORT.

7.
Food Chem ; 423: 136315, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37167672

RESUMO

Hyperlipidaemia, a common chronic disease, is the cause of cardiovascular diseases such as myocardial infarction and atherosclerosis. Generally, drugs for lowering blood lipids have disadvantages such as short or poor efficacy, high toxicity, and side effects. Rapeseed active peptides are excellent substitutes for lipid-lowering drugs because of their high biological safety, strong penetration, and easy absorption by the human body. This study separated and purified the rapeseed peptides using gel chromatography and mass spectrometry. Rapeseed peptides amino acid sequences were determined to obtain Glu-Phe-Leu-Glu-Leu-Leu (EFLELL) peptides with good hypolipidaemic activity and IC50 values of 0.1973 ± 0.05 mM (sodium taurocholate), 0.375 ± 0.03 mM (sodium cholate), and 0.203 ± 0.06 mM (sodium glycine cholate). The EFLELL hypolipidaemic activity was evaluated, and its mechanism of action was investigated using cell lines. Rapeseed peptide treatment significantly decreased the total cholesterol (T-CHO), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels, and the protein and gene expression levels of proprotein convertase subtilisin/kexin type 9 (PCSK9) and low-density lipoprotein cholesterol (LDLR) suggested the mechanism. Molecular docking revealed that the binding energy between rapeseed peptide and LDLR-PCSK9 molecules was -6.3 kcal/mol and -8.1 kcal/mol. In conclusion, the rapeseed peptide EFLELL exerts a favourable hypolipidaemic effect by modulating the LDLR-PCSK9 signalling pathway.


Assuntos
Brassica napus , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/química , Pró-Proteína Convertase 9/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Simulação de Acoplamento Molecular , Receptores de LDL/genética , Receptores de LDL/metabolismo , Peptídeos/farmacologia , LDL-Colesterol
8.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108405

RESUMO

Bisphenol A (BPA) is widely used to harden plastics and polycarbonates and causes serious toxic effects in multiple organs, including the intestines. Selenium, as an essential nutrient element for humans and animals, exhibits a predominant effect in various physiological processes. Selenium nanoparticles have attracted more and more attention due to their outstanding biological activity and biosafety. We prepared chitosan-coated selenium nanoparticles (SeNPs) and further compared the protective effects, and investigated the underlying mechanism of SeNPs and inorganic selenium (Na2SeO3) on BPA-induced toxicity in porcine intestinal epithelial cells (IPEC-J2). The particle size, zeta potential, and microstructure of SeNPs were detected by using a nano-selenium particle size meter and a transmission electron microscope. IPEC-J2 cells were exposed to BPA alone or simultaneously exposed to BPA and SeNPs or Na2SeO3. The CCK8 assay was performed to screen the optimal concentration of BPA exposure and the optimal concentration of SeNPs and Na2SeO3 treatment. The apoptosis rate was detected by flow cytometry. Real-time PCR and Western blot methods were used to analyze the mRNA and protein expression of factors related to tight junctions, apoptosis, inflammatory responses and endoplasmic reticulum stress. Increased death and morphological damage were observed after BPA exposure, and these increases were attenuated by SeNPs and Na2SeO3 treatment. BPA exposure disturbed the tight junction function involved with decreased expression of tight junction protein Zonula occludens 1 (ZO-1), occludin, and claudin-1 proteins. Proinflammatory response mediated by the transcription factor nuclear factor-k-gene binding (NF-κB), such as elevated levels of interleukin-1ß(IL-1ß), interleukin-6 (IL-6), interferon-γ (IFN-γ), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α) expression was induced at 6 and 24 h after BPA exposure. BPA exposure also disturbed the oxidant/antioxidant status and led to oxidative stress. IPEC-J2 cell apoptosis was induced by BPA exposure, as indicated by increased BCL-2-associated X protein (Bax), caspase 3, caspase 8, and caspase 9 expression and decreased B-cell lymphoma-2 (Bcl-2) and Bcl-xl expression. BPA exposure activated the endoplasmic reticulum stress (ERS) mediated by the receptor protein kinase receptor-like endoplasmic reticulum kinase (PERK), Inositol requiring enzyme 1 (IRE1α), and activating transcription factor 6 (ATF6). We found that treatment with SeNPs and Na2SeO3 can alleviate the intestinal damage caused by BPA. SeNPs were superior to Na2SeO3 and counteracted BPA-induced tight junction function injury, proinflammatory response, oxidative stress, apoptosis, and ERS stress. Our findings suggest that SeNPs protect intestinal epithelial cells from BPA-induced damage, partly through inhibiting ER stress activation and subsequently attenuating proinflammatory responses and oxidative stress and suppressing apoptosis, thus enhancing the intestinal epithelial barrier function. Our data indicate that selenium nanoparticles may represent an effective and reliable tool for preventing BPA toxicity in animals and humans.


Assuntos
Nanopartículas , Selênio , Humanos , Animais , Suínos , Selênio/farmacologia , Selênio/metabolismo , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Intestinos , Células Epiteliais/metabolismo , Nanopartículas/química , Claudinas/metabolismo , Apoptose
9.
Int Immunopharmacol ; 118: 110052, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37003185

RESUMO

Formyl peptide receptor 2 (FPR2) and its mouse counterpart Fpr2 are the members of the G protein-coupled receptor (GPCR) family. FPR2 is the only member of the FPRs that interacts with ligands from different sources. FPR2 is expressed in myeloid cells as well as epithelial cells, endothelial cells, neurons, and hepatocytes. During the past years, some unusual properties of FPR2 have attracted intense attention because FPR2 appears to possess dual functions by activating or inhibiting intracellular signal pathways based on the nature, concentration of the ligands, and the temporal and spatial settings of the microenvironment in vivo, the cell types it interacts with. Therefore, FPR2 controls an abundant array of developmental and homeostatic signaling cascades, in addition to its "classical" capacity to mediate the migration of hematopoietic and non-hematopoietic cells including malignant cells. In this review, we summarize recent development in FPR2 research, particularly in its role in diseases, therefore helping to establish FPR2 as a potential target for therapeutic intervention.


Assuntos
Células Endoteliais , Receptores de Formil Peptídeo , Camundongos , Animais , Receptores de Formil Peptídeo/metabolismo , Células Endoteliais/metabolismo , Transdução de Sinais , Receptores de Lipoxinas/metabolismo
10.
Front Biosci (Landmark Ed) ; 28(12): 362, 2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38179770

RESUMO

Cancer stem cells (CSCs) have been increasingly recognized in recent years. CSCs from human neural tumors are one of the root causes of metastatic tumor progression, therapeutic resistance and recurrence. However, there is a lack of comprehensive literature that systematically consolidates the biomarkers specific to CSCs in neurological cancers. Therefore, this review provides a comprehensive summary of cancer stem cell (CSC) biomarkers for neurological tumors such as glioma, meningioma, medulloblastoma and neurofibroma. It also points out the possible functions of these biomarkers in diagnosis, treatment and prognosis, providing a broader perspective. First, we quantitatively screened key words such as CSCs, biomarkers, and expression by bibliometric analysis and clarified the intrinsic connections between the key words. Then, we describe the CSC biomarkers of major neurological tumors and their pathway mechanisms, and provide an in-depth analysis of the commonalities and differences with the biomarkers of non-CSCs. In addition, many studies have shown that antipsychotic drugs can inhibit tumor growth and reduce the expression of CSC biomarkers, which facilitates targeted therapy against tumors in the nervous system. Therefore, this study will focus on the biomarkers of CSCs in the nervous system, hoping to provide guidance for future in-depth exploration and monitoring of neurological tumors for clinical applications.


Assuntos
Neoplasias do Sistema Nervoso Central , Neoplasias , Humanos , Biomarcadores/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Biomarcadores Tumorais/metabolismo
11.
Front Oncol ; 12: 831268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480112

RESUMO

Background: Hepatocellular carcinoma (HCC) is one of the most lethal human tumors with extensive intratumor heterogeneity (ITH). Serine protease 3 (PRSS3) is an indispensable member of the trypsin family and has been implicated in the pathogenesis of several malignancies, including HCC. However, the paradoxical effects of PRSS3 on carcinogenesis due to an unclear molecular basis impede the utilization of its biomarker potential. We hereby explored the contribution of PRSS3 transcripts to tumor functional heterogeneity by systematically dissecting the expression of four known splice variants of PRSS3 (PRSS3-SVs, V1~V4) and their functional relevance to HCC. Methods: The expression and DNA methylation of PRSS3 transcripts and their associated clinical relevance in HCC were analyzed using several publicly available datasets and validated using qPCR-based assays. Functional experiments were performed in gain- and loss-of-function cell models, in which PRSS3 transcript constructs were separately transfected after deleting PRSS3 expression by CRISPR/Cas9 editing. Results: PRSS3 was aberrantly differentially expressed toward bipolarity from very low (PRSS3Low ) to very high (PRSS3High ) expression across HCC cell lines and tissues. This was attributable to the disruption of PRSS3-SVs, in which PRSS3-V2 and/or PRSS3-V1 were dominant transcripts leading to PRSS3 expression, whereas PRSS3-V3 and -V4 were rarely or minimally expressed. The expression of PRSS3-V2 or -V1 was inversely associated with site-specific CpG methylation at the PRSS3 promoter region that distinguished HCC cells and tissues phenotypically between hypermethylated low-expression (mPRSS3-SVLow ) and hypomethylated high-expression (umPRSS3-SVHigh ) groups. PRSS3-SVs displayed distinct functions from oncogenic PRSS3-V2 to tumor-suppressive PRSS3-V1, -V3 or PRSS3-V4 in HCC cells. Clinically, aberrant expression of PRSS3-SVs was translated into divergent relevance in patients with HCC, in which significant epigenetic downregulation of PRSS3-V2 was seen in early HCC and was associated with favorable patient outcome. Conclusions: These results provide the first evidence for the transcriptional and functional characterization of PRSS3 transcripts in HCC. Aberrant expression of divergent PRSS3-SVs disrupted by site-specific CpG methylation may integrate the effects of oncogenic PRSS3-V2 and tumor-suppressive PRSS3-V1, resulting in the molecular diversity and functional plasticity of PRSS3 in HCC. Dysregulated expression of PRSS3-V2 by site-specific CpG methylation may have potential diagnostic value for patients with early HCC.

12.
Environ Sci Pollut Res Int ; 29(27): 41207-41218, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35091949

RESUMO

Cadmium (Cd) is an environmental contaminant, which is potentially toxic. It is well known that Cd can accumulate in the liver and kidney and cause serious damage. However, few studies have investigated the mechanism of intestinal damage induced by Cd in swine. Here, we established Cd poisoning models in vivo and in vitro to explore the mechanism of intestinal injury induced by Cd in swine. The morphology of intestinal tissue cells was observed by TUNEL staining and electron microscopy, and the morphology of IPEC-J2 cells was observed by flow cytometry, Hoechst staining, and MDC staining. Cell morphological observations revealed that Cd treatment induced ileal apoptosis and autophagy. The effects of Cd on the PI3K/Akt pathway, as well as on apoptosis and autophagy-related protein expression in intestinal cells, were analyzed by western blot (WB) and the expression of mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that Cd induced autophagy by increasing the levels of autophagy markers Beclin1, Autophagy-associated gene 5 (ATG5), Autophagy-associated gene 16 (ATG16), and Microtubule-associated protein light chains 3-2 (LC3-II), and by reducing the expression levels of Mechanistic target of rapamycin kinase (mTOR) and Microtubule-associated protein light chains 3-1 (LC3-I). Cell apoptosis was induced by increasing the expression of apoptosis markers Bcl-2 associated X protein (Bax), Cysteinyl aspartate specific proteinase 9 (Caspase9), cleaved Caspase9, Cysteinyl aspartate specific proteinase 3 (Caspase3), and cleaved Caspase3, and by reducing the expression of B cell lymphoma/leukemia 2 (Bcl-2). At the same time, Cd decreased the expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and their phosphorylation. We treated IPEC-J2 cells with the PI3K activator 740Y-P and analyzed the morphological changes as well as autophagy and apoptosis-related gene expression. The results showed that 740Y-P could reduce apoptosis and autophagy induced by Cd. In conclusion, our findings suggest that Cd induces intestinal apoptosis and autophagy in swine by inactivating the PI3K/Akt signaling pathway.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Apoptose , Ácido Aspártico , Autofagia , Cádmio/toxicidade , Intestino Delgado , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Suínos , Serina-Treonina Quinases TOR/metabolismo
13.
Front Biosci (Landmark Ed) ; 26(11): 1362-1372, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34856773

RESUMO

Human cathelicidin antimicrobial peptide LL-37 (LL-37) is an antimicrobial peptide derived from its precursor protein hCAP18, which is an only cathelicidin in human. LL-37 not only serves as a mediator of innate immune defense against invading microorganisms, but it also plays an essential role in tissue homeostasis, regenerative processes, regulation of proinflammatory responses, and inhibition of cancer progression. Therefore, LL-37 has been considered as a drug lead for diseases. However, high levels of LL-37 may reduce cell viability and promote apoptosis of osteoblasts, vascular smooth muscle cells, periodontal ligament cells, neutrophils, airway epithelial cells and T cells. Recent evidence reveals that LL-37-derived short peptides possess similar biological activities as the whole LL-37 with reduced cytotoxicity. Thus, such small molecules constitute a pool of potential therapeutic agents for diseases.


Assuntos
Peptídeos Antimicrobianos , Catelicidinas , Células Epiteliais , Humanos , Neutrófilos
14.
Oxid Med Cell Longev ; 2021: 1172273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970413

RESUMO

Oxidative stress (OS) is involved in various reproductive diseases and can induce autophagy and apoptosis, which determine the different fates of cells. However, the sequence and the switch mechanism between autophagy and apoptosis are unclear. Here, we reported that chronic restraint stress (CRS) induced OS (decreased T-AOC, T-SOD, CAT and GSH-Px and increased MDA) and then disturbed the endocrine environment of sows during early pregnancy, including the hypothalamic-pituitary-ovarian (HPO) and the hypothalamic-pituitary-adrenal (HPA) axes. Meanwhile, after CRS, the KEAP1/NRF2 pathway was inhibited and attenuated the antioxidative ability to cause OS of the endometrium. The norepinephrine (NE) triggered ß 2-AR to activate the FOXO1/NF-κB pathway, which induced endometrial inflammation. CRS induced the caspase-dependent apoptosis pathway and caused MAP1LC3-II accumulation, SQSTM1/p62 degradation, and autophagosome formation to initiate autophagy. Furthermore, in vitro, a cellular OS model was established by adding hydrogen peroxide into cells. Low OS maintained the viability of endometrial epithelial cells by triggering autophagy, while high OS induced cell death by initiating caspase-dependent apoptosis. Autophagy preceded the occurrence of apoptosis, which depended on the subcellular localization of FOXO1. In the low OS group, FOXO1 was exported from the nucleus to be modified into Ac-FOXO1 and bound to ATG7 in the cytoplasm, which promoted autophagy to protect cells. In the high OS group, FOXO1 located in the nucleus to promote transcription of proapoptotic proteins and then induce apoptosis. Here, FOXO1, as a redox sensor switch, regulated the transformation of cell autophagy and apoptosis. In summary, the posttranslational modification of FOXO1 may become the target of OS treatment.


Assuntos
Células Epiteliais/metabolismo , Proteína Forkhead Box O1/metabolismo , Estresse Oxidativo/genética , Animais , Apoptose , Autofagia , Feminino , Humanos , Gravidez , Suínos
15.
Nutrients ; 13(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062793

RESUMO

Selenium (Se) is an essential element for the maintenance of a healthy physiological state. However, due to environmental and dietary factors and the narrow safety range of Se, diseases caused by Se deficiency or excess have gained considerable traction in recent years. In particular, links have been identified between low Se status, cognitive decline, immune disorders, and increased mortality, whereas excess Se increases metabolic risk. Considerable evidence has suggested microRNAs (miRNAs) regulate interactions between the environment (including the diet) and genes, and play important roles in several diseases, including cancer. MiRNAs target messenger RNAs to induce changes in proteins including selenoprotein expression, ultimately generating disease. While a plethora of data exists on the epigenetic regulation of other dietary factors, nutrient Se epigenetics and especially miRNA regulated mechanisms remain unclear. Thus, this review mainly focuses on Se metabolism, pathogenic mechanisms, and miRNAs as key regulatory factors in Se-related diseases. Finally, we attempt to clarify the regulatory mechanisms underpinning Se, miRNAs, selenoproteins, and Se-related diseases.


Assuntos
Doenças Metabólicas/metabolismo , MicroRNAs/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição/genética , Selênio/metabolismo , Selenoproteínas/metabolismo , Epigênese Genética/efeitos dos fármacos , Humanos , Doenças Metabólicas/genética
16.
Oncol Rep ; 45(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33786615

RESUMO

Disruption in mucins (MUCs) is involved in cancer development and metastasis and is thus used as a biomarker. Non­small cell lung carcinoma (NSCLC) is characterized by heterogeneous genetic and epigenetic alterations. Lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are the two primary subtypes of NSCLC that require different therapeutic interventions. Here, we report distinct expression and epigenetic alterations in mucin 22 (MUC22), a new MUC family member, in LUSC vs. LUAD. In lung cancer cell lines and tissues, MUC22 was downregulated in LUSC (MUC22Low) but upregulated in LUAD (MUC22High) with co­expression of MUC21. The aberrant expression of MUC22 was inversely correlated with its promoter hypermethylation in LUSC and hypomethylation in LUAD cells and tissues, respectively. Decreased MUC22 expression in NSCLC cell lines was restored upon treatment with epigenetic modifiers 5­aza­2'­deoxycytidine (5­Aza) or trichostatin A (TSA), accompanied by reduction in global protein level of histone deacetylase 1 (HDAC1) but increased enrichment of histone H3 lysine 9 acetylation (H3K9ac) specifically in the MUC22 promoter in the SK­MES­1 cell line. MUC22 knockdown increased the growth and motility of lung cancer cells and an immortalized human bronchial epithelial BEAS­2B cell line via NF­κB activation. Clinically, MUC22Low in LUSC and MUC22High in LUAD were shown to be indicators of unfavorable overall survival for patients with early cancer stages. Our study reveals that changes in MUC22 expression due to epigenetic alterations in NSCLC may have important biological significance and prognostic potential in LUSC when compared to LUAD. Thus, MUC22 expression and epigenetic alterations may be used for molecular subtyping of NSCLC in precision medicine.


Assuntos
Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Mucinas/genética , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/terapia , Linhagem Celular Tumoral , Metilação de DNA , Conjuntos de Dados como Assunto , Regulação para Baixo , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Heterogeneidade Genética , Humanos , Estimativa de Kaplan-Meier , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/terapia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Medicina de Precisão/métodos , Prognóstico , Regiões Promotoras Genéticas/genética , RNA-Seq , Regulação para Cima , Adulto Jovem
17.
J Cell Sci ; 134(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33468624

RESUMO

Host-derived antimicrobial peptides play an important role in the defense against extracellular bacterial infections. However, the capacity of antimicrobial peptides derived from macrophages as potential antibacterial effectors against intracellular pathogens remains unknown. In this study, we report that normal (wild-type, WT) mouse macrophages increased their expression of cathelin-related antimicrobial peptide (CRAMP, encoded by Camp) after infection by viable E. coli or stimulation with inactivated E. coli and its product lipopolysaccharide (LPS), a process involving activation of NF-κB followed by protease-dependent conversion of CRAMP from an inactive precursor to an active form. The active CRAMP was required by WT macrophages for elimination of phagocytosed E. coli, with participation of autophagy-related proteins ATG5, LC3-II and LAMP-1, as well as for aggregation of the bacteria with p62 (also known as SQSTM1). This process was impaired in CRAMP-/- macrophages, resulting in retention of intracellular bacteria and fragmentation of macrophages. These results indicate that CRAMP is a critical component in autophagy-mediated clearance of intracellular E. coli by mouse macrophages.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Escherichia coli , Animais , Autofagia , Macrófagos , Camundongos , Fagocitose
18.
J Pathol ; 253(3): 339-350, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33104252

RESUMO

The cathelin-related antimicrobial peptide CRAMP protects the mouse colon from inflammation, inflammation-associated carcinogenesis, and disrupted microbiome balance, as shown in systemic Cnlp-/- mice (also known as Camp-/- mice). However, the mechanistic basis for the role and the cellular source of CRAMP in colon pathophysiology are ill defined. This study, using either epithelial or myeloid conditional Cnlp-/- mice, demonstrated that epithelial cell-derived CRAMP played a major role in supporting normal development of colon crypts, mucus production, and repair of injured mucosa. On the other hand, myeloid cell-derived CRAMP potently supported colon epithelial resistance to bacterial invasion during acute inflammation with exacerbated mucosal damage and higher rate of mouse mortality. Therefore, a well concerted cooperation of epithelial- and myeloid-derived CRAMP is essential for colon mucosal homeostasis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Células Epiteliais/metabolismo , Homeostase/fisiologia , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Animais , Colo/fisiologia , Camundongos , Camundongos Knockout , Catelicidinas
19.
Gastric Cancer ; 24(2): 314-326, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33111209

RESUMO

BACKGROUND: Hydrogen/potassium ATPase ß (ATP4B) is a proton pump acting an essential role in gastric acid secretion. This study aimed to investigate the diagnostic performance of ATP4B and its biological role in tumor progression in gastric cancer. METHODS: The correlations between ATP4B expression level and clinicopathologic parameters, as well as the relevance of ATP4B expression with overall survival were assessed. The functional roles of ATP4B in gastric cancer were verified by gain- and loss-of-function cell models and tumor xenograft models. The possible downstream effects of ATP4B were analyzed by iTRAQ-based quantitative proteomics analysis. RESULTS: A dramatic decrease in ATP4B was associated with malignant transformation in gastric mucosa lesions and correlated with poor differentiation. Restoration of ATP4B expression in gastric cancer cells significantly suppressed cell proliferation, cell viability, migration, invasion, tumorigenicity and induced apoptosis, whereas ATP4B silencing exerted the opposite effects. Mechanistically, we found a quality control on mitochondrial metabolism and functions in ATP4B-overexpression GC cells. CONCLUSIONS: Our data suggest that decreasing ATP4B is an indicator for gastric mucosa malignant transformation and GC aggressive phenotype and it plays an inhibitory role in gastric cancer as a tumor suppressor via regulating mitochondrial metabolism and apoptosis pathway.


Assuntos
Mucosa Gástrica/patologia , Gastrite Atrófica/genética , Genes Supressores de Tumor/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Neoplasias Gástricas/genética , Atrofia , Biomarcadores Tumorais/genética , Carcinogênese/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Feminino , Mucosa Gástrica/enzimologia , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Prognóstico
20.
Nat Commun ; 11(1): 5912, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219235

RESUMO

The physiological homeostasis of gut mucosal barrier is maintained by both genetic and environmental factors and its impairment leads to pathogenesis such as inflammatory bowel disease. A cytokine like molecule, FAM3D (mouse Fam3D), is highly expressed in mouse gastrointestinal tract. Here, we demonstrate that deficiency in Fam3D is associated with impaired integrity of colonic mucosa, increased epithelial hyper-proliferation, reduced anti-microbial peptide production and increased sensitivity to chemically induced colitis associated with high incidence of cancer. Pretreatment of Fam3D-/- mice with antibiotics significantly reduces the severity of chemically induced colitis and wild type (WT) mice co-housed with Fam3D-/- mice phenocopy Fam3D-deficiency showing increased sensitivity to colitis and skewed composition of fecal microbiota. An initial equilibrium of microbiota in cohoused WT and Fam3D-/- mice is followed by an increasing divergence of the bacterial composition after separation. These results demonstrate the essential role of Fam3D in colon homeostasis, protection against inflammation associated cancer and normal microbiota composition.


Assuntos
Carcinogênese , Colo , Citocinas/metabolismo , Animais , Colite , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Neoplasias Colorretais , Modelos Animais de Doenças , Microbioma Gastrointestinal , Inflamação , Doenças Inflamatórias Intestinais , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/patologia , Camundongos , Proteínas Citotóxicas Formadoras de Poros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA